Abstract
We develop a systematic approach to construct energy functionals of the one-particle reduced density matrix (1RDM) for equilibrium systems at finite temperature. The starting point of our formulation is the grand potential Ω[G] regarded as variational functional of the Green’s function G based on diagrammatic many-body perturbation theory and for which we consider either the Klein or Luttinger–Ward form. By restricting the input Green’s function to be one-to-one related to a set on one-particle reduced density matrices (1RDM) this functional becomes a functional of the 1RDM. To establish the one-to-one mapping we use that, at any finite temperature and for a given 1RDM γ in a finite basis, there exists a non-interacting system with a spatially non-local potential v[γ] which reproduces the given 1RDM. The corresponding set of non-interacting Green’s functions defines the variational domain of the functional Ω. In the zero temperature limit we obtain an energy functional E[γ] which by minimisation yields an approximate ground state 1RDM and energy. As an application of the formalism we use the Klein and Luttinger–Ward functionals in the GW-approximation to compute the binding curve of a model hydrogen molecule using an extended Hubbard Hamiltonian. We compare further to the case in which we evaluate the functionals on a Hartree–Fock and a Kohn–Sham Green’s function. We find that the Luttinger–Ward version of the functionals performs the best and is able to reproduce energies close to the GW energy which corresponds to the stationary point.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
O.V. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005)
D.R. Rohr, K. Pernal, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 129, 164105 (2008)
M. Piris, X. Lopez, F. Ruipérez, J.M. Matxain, J.M. Ugalde, J. Chem. Phys. 134, 164102 (2011)
F. Ruiperez, M. Piris, J.M. Ugalde, J.M. Matxain, Phys. Chem. Chem. Phys. 15, 2055 (2013)
S. Sharma, J.K. Dewhurst, N.N. Lathiotakis, E.K.U. Gross, Phys. Rev. B 78, 201103(R) (2008)
S. Sharma, J.K. Dewhurst, S. Shallcross, E.K.U. Gross, Phys. Rev. Lett. 110, 116403 (2013)
E. Tölö, A. Harju, Phys. Rev. B 81, 075321 (2010)
M. Buijse, Ph.D. thesis, Vrije Universiteit, De Boelelaan 1105, Amsterdam, The Netherlands, 1991, https://doi.org/theochem.chem.rug.nl/publications/PDF/ft217.pdf
M. Buijse, E.J. Baerends, Mol. Phys. 100, 401 (2002)
Ł.M. Mentel, R. van Meer, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 140, 214105 (2014)
D.A. Mazziotti, Chem. Phys. Lett. 338, 323 (2001)
M. Piris, P. Otto, Int. J. Quantum Chem. 94, 317 (2003)
M. Piris, Int. J. Quantum Chem. 106, 1093 (2006)
M. Piris, J.M. Matxain, X. Lopez, J.M. Ugalde, J. Chem. Phys. 131, 021102 (2009)
M. Piris, J.M. Matxain, X. Lopez, J. Chem. Phys. 139, 234109 (2013)
M. Piris, J. Chem. Phys. 141, 044107 (2014)
M. Piris, Phys. Rev. Lett. 119, 063002 (2017)
K. Pernal, K.J.H. Giesbertz, inDensity-Functional Methods for Excited States, edited by N. Ferré, M. Filatov, M. Huix-Rotllant (Springer, Berlin, Heidelberg, 2015), Vol. 368 of Topics in Current Chemistry, Chap. 4, p. 125
A.L. Fetter, J.D. Walecka,Quantum Theory of Many-Particle Systems (Dover Publiations, Inc., 2003)
G. Stefanucci, R. van Leeuwen,Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge Univeristy Press, New York, 2013)
F. Furche, Phys. Rev. B 64, 195120 (2001)
N.E. Dahlen, U. von Barth, Phys. Rev. A 69, 195102 (2004)
N.E. Dahlen, R. van Leeuwen, U. von Barth, Phys. Rev. A 73, 012511 (2006)
F. Furche, J. Chem. Phys. 129, 114105 (2008)
M. Hellgren, U. von Barth, J. Chem. Phys. 132, 044101 (2010)
A. Heßelmann, A. Görling, Mol. Phys. 108, 359 (2010)
H. Eshuis, J.E. Bates, F. Furche, Theor. Chem. Acc. 131, 1084 (2012)
J.E. Bates, F. Furche, J. Chem. Phys. 139, 171103 (2013)
P. Bleiziffer, A. Heßelmann, A. Görling, J. Chem. Phys. 139, 084113 (2013)
M. Hellgren, F. Caruso, D.R. Rohr, X. Ren, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015)
W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)
T.L. Gilbert, Phys. Rev. B 12, 2111 (1975)
K. Pernal, Phys. Rev. Lett. 94, 233002 (2005)
K.J.H. Giesbertz, E.J. Baerends, J. Chem. Phys. 132, 194108 (2010)
G. Friesecke, Proc. R. Soc. London A 459, 47 (2003)
K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 139, 104109 (2013)
K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 139, 104110 (2013)
K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 140, 184108 (2014)
K.J.H. Giesbertz, M. Ruggenthaler, https://doi.org/arXiv:1710.08805 (2017)
A. Görling, M. Levy, Phys. Rev. B 47, 13105 (1993)
A. Görling, M. Levy, Phys. Rev. A 50, 196 (1994)
T. Baldsiefen, Ph.D. thesis, Institut für Theoretische Physik Freie Universität Berlin, 2012
T. Baldsiefen, A. Cangi, E.K.U. Gross, https://doi.org/arXiv:1208.4703 (2012)
P.E. Blöchl, T. Pruschke, M. Potthoff, Phys. Rev. B 88, 205139 (2013)
C.O. Almbladh, U. von Barth, R. van Leeuwen, Int. J. Mod. Phys. B 13, 535 (1999)
F. Aryasetiawan, T. Miyake, K. Terakura, Phys. Rev. Lett. 88, 166401 (2002)
T. Miyake, F. Aryasetiawan, T. Kotani, M. van Schilfgaarde, M. Usuda, K. Terakura, Phys. Rev. B 66, 245103 (2002)
J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960)
A. Klein, Phys. Rev. 121, 950 (1961)
Y.M. Niquet, M. Fuchs, X. Gonze, Phys. Rev. A 68, 032507 (2003)
F. Caruso, D.R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)
G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961)
G. Baym, Phys. Rev. 127, 1391 (1962)
U. vonBarth, N.E. Dahlen, R. van Leeuwen, G. Stefanucci, Phys. Rev. B 72, 235109 (2005)
A. Szabo, N.S. Ostlund,Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, Inc., N.Y., 1989)
P. Löwdin, J. Chem. Phys. 18, 365 (1950)
W. Kołos, L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965)
W. Kołos, L. Wolniewicz, J. Chem. Phys. 45, 509 (1966)
W. Kołos, L. Wolniewicz, J. Chem. Phys. 50, 3228 (1969)
L. Wolniewicz, K. Dressler, J. Chem. Phys. 82, 3292 (1985)
R. Requist, O. Pankratov, Phys. Rev. B 77, 235121 (2008)
M. Fuchs, Y.M. Niquet, X. Gonze, K. Burke, J. Chem. Phys. 122, 094116 (2005)
N. Rosen, Phys. Rev. 38, 2099 (1931)
J.O. Hirschfelder, J.W. Linnett, J. Chem. Phys. 18, 130 (1950)
R.S. Mulliken, J. Chim. Phys. 46, 497 (1949)
Author information
Authors and Affiliations
Corresponding author
Additional information
Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.
Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2018-90279-1.
Electronic supplementary material
Supplementary data
Rights and permissions
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Giesbertz, K.J.H., Uimonen, AM. & van Leeuwen, R. Approximate energy functionals for one-body reduced density matrix functional theory from many-body perturbation theory. Eur. Phys. J. B 91, 282 (2018). https://doi.org/10.1140/epjb/e2018-90279-1
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2018-90279-1