Skip to main content

Dissipative quantum dynamics and optimal control using iterative time ordering: an application to superconducting qubits

Abstract

We combine a quantum dynamical propagator that explicitly accounts for quantum mechanical time ordering with optimal control theory. After analyzing its performance with a simple model, we apply it to a superconducting circuit under so-called Pythagorean control. Breakdown of the rotating-wave approximation is the main source of the very strong time-dependence in this example. While the propagator that accounts for the time ordering in an iterative fashion proves its numerical efficiency for the dynamics of the superconducting circuit, its performance when combined with optimal control turns out to be rather sensitive to the strength of the time-dependence. We discuss the kind of quantum gate operations that the superconducting circuit can implement including their performance bounds in terms of fidelity and speed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F.K. Wilhelm, Eur. Phys. J. D 69, 279 (2015)

    ADS  Article  Google Scholar 

  2. 2.

    J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Reson. 172, 296 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    A. Castro, J. Werschnik, E.K.U. Gross, Phys. Rev. Lett. 109, 153603 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    M. Hellgren, E. Räsänen, E.K.U. Gross, Phys. Rev. A 88, 013414 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    L. Greenman, C.P. Koch, K.B. Whaley, Phys. Rev. A 92, 013407 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    R.E. Goetz, A. Karamatskou, R. Santra, C.P. Koch, Phys. Rev. A 93, 013413 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    J. Somlói, V.A. Kazakovski, D.J. Tannor, Chem. Phys. 172, 85 (1993)

    ADS  Article  Google Scholar 

  9. 9.

    M.H. Goerz, T. Calarco, C.P. Koch, J. Phys. B 44, 154011 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    P. Watts, J. Vala, M.M. Müller, T. Calarco, K.B. Whaley, D.M. Reich, M.H. Goerz, C.P. Koch, Phys. Rev. A 91, 062306 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    M.H. Goerz, G. Gualdi, D.M. Reich, C.P. Koch, F. Motzoi, K.B. Whaley, J. Vala, M.M. Müller, S. Montangero, T. Calarco, Phys. Rev. A 91, 062307 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    M. Ndong, H. Tal-Ezer, R. Kosloff, C.P. Koch, J. Chem. Phys. 132, 064105 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    M. Ndong, H. Tal-Ezer, R. Kosloff, C.P. Koch, J. Chem. Phys. 130, 124108 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984)

    ADS  Article  Google Scholar 

  15. 15.

    H. Tal-Ezer, R. Kosloff, I. Schaefer, J. Sci. Comput. 3, 211 (2012)

    Article  Google Scholar 

  16. 16.

    I. Schaefer, H. Tal-Ezer, R. Kosloff, J. Comput. Phys. 343, 368 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    A.I. Konnov, V.F. Krotov, Autom. Remote Control 60, 1427 (1999)

    Google Scholar 

  18. 18.

    S.E. Sklarz, D.J. Tannor, Phys. Rev. A 66, 053619 (2002)

    ADS  Article  Google Scholar 

  19. 19.

    J.P. Palao, R. Kosloff, Phys. Rev. A 68, 062308 (2003)

    ADS  Article  Google Scholar 

  20. 20.

    D.M. Reich, M. Ndong, C.P. Koch, J. Chem. Phys. 136, 104103 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994)

    ADS  Article  Google Scholar 

  22. 22.

    H.-P. Breuer, F. Petruccione, The theory of open quantum systems, 1st ed. (Oxford University Press, 2002)

  23. 23.

    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Article  Google Scholar 

  24. 24.

    M.A.L. Marques, E.K.U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004)

    ADS  Article  Google Scholar 

  25. 25.

    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (Eds.), Fundamentals of time-dependent density functional theory, in Lecture notes in physics (Springer, Berlin, Heidelberg, 2012), Vol. 837

  26. 26.

    M. Hochbruck, A. Ostermann, Acta Numer. 19, 209 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Y.I. Salamin, J. Phys. A 28, 1129 (1995)

    ADS  Article  Google Scholar 

  28. 28.

    H. Suchowski, Y. Silberberg, D.B. Uskov, Phys. Rev. A 84, 013414 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    E. Svetitski, H. Suchowski, R. Resh, Y. Shalibo, J.M. Martinis, N. Katz, Nat. Commun. 5, 5617 (2014)

    ADS  Article  Google Scholar 

  30. 30.

    J.M. Gambetta, J.M. Chow, M. Steffen, Quantum Inf. 3, 2 (2017)

    Article  Google Scholar 

  31. 31.

    D.M. Reich, N. Katz, C.P. Koch, Sci. Rep. 5, 12430 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

    ADS  Article  Google Scholar 

  33. 33.

    B. Kraus, J.I. Cirac, Phys. Rev. A 63, 062309 (2001)

    ADS  Article  Google Scholar 

  34. 34.

    J. Zhang, J. Vala, S. Sastry, K.B. Whaley, Phys. Rev. A 67, 042313 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Y. Makhlin, Quantum Inf. Process. 1, 243 (2002)

    MathSciNet  Article  Google Scholar 

  36. 36.

    A.M. Steane, Phys. Rev. A 68, 042322 (2003)

    ADS  Article  Google Scholar 

  37. 37.

    C. Tesch, R. de Vivie-Riedle, Phys. Rev. Lett. 89, 157901 (2002)

    ADS  Article  Google Scholar 

  38. 38.

    J.P. Palao, R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002)

    ADS  Article  Google Scholar 

  39. 39.

    V. Jurdjevic, H.J. Sussmann, J. Differ. Equ. 12, 313 (1972)

    ADS  Article  Google Scholar 

  40. 40.

    G.M. Huang, T.J. Tarn, C.W. Clark, J. Math. Phys. 24, 2608 (1983)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    S. Lloyd, Nature 406, 1047 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    L.B. Levitin, T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009)

    ADS  Article  Google Scholar 

  43. 43.

    C.P. Koch, J. Phys. Condens. Matter 28, 213001 (2016)

    ADS  Article  Google Scholar 

  44. 44.

    F. Mezzadri, Not. AMS 54, 592 (2007)

    Google Scholar 

  45. 45.

    H. Tal-Ezer, SIAM J. Sci. Comput. 12, 648 (1991)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christiane P. Koch.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basilewitsch, D., Marder, L. & Koch, C.P. Dissipative quantum dynamics and optimal control using iterative time ordering: an application to superconducting qubits. Eur. Phys. J. B 91, 161 (2018). https://doi.org/10.1140/epjb/e2018-90224-4

Download citation