Exact partition potential for model systems of interacting electrons in 1-D

Abstract

We find the numerically exact partition potential for 1-D systems of interacting electrons designed to model diatomic molecules. At integer fragment occupations, the kinetic contribution to the partition potential develops sharp features in the internuclear region that nearly cancel corresponding features of exchange-correlation. They occur at locations that coincide with those of well-known features of the underlying molecular Kohn–Sham potential. For non-integer fragment occupations, we demonstrate that the fragment energy gaps determine the kinetic part of the partition potential. Our results highlight the importance of non-additive noninteracting kinetic and exchange-correlation energy approximations in density-embedding methods at large internuclear separations and the importance of non-additive noninteracting kinetic energy approximations at all separations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Parr, W. Yang,Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  2. 2.

    P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 129, 2010 (2000)

    Google Scholar 

  3. 3.

    P. Geerlings, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

    Article  Google Scholar 

  4. 4.

    M. Hellgren, E.K.U. Gross, J. Chem. Phys. 136, 114102 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    M.H. Cohen, A. Wasserman, J. Phys. Chem. A 111, 2229 (2007)

    Article  Google Scholar 

  6. 6.

    J.P. Perdew, R.G. Parr, M. Levy, J.J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    ADS  Article  Google Scholar 

  7. 7.

    M.H. Cohen, A. Wasserman, J. Stat. Phys. 125, 1121 (2006)

    ADS  Article  Google Scholar 

  8. 8.

    J. Nafziger, A. Wasserman, J. Phys. Chem. A 118, 7623 (2014)

    Article  Google Scholar 

  9. 9.

    J. Nafziger, A. Wasserman, J. Chem. Phys. 143, 234105 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    J. Nafziger, K. Jiang, A. Wasserman, J. Chem. Theory Comput. 13, 577 (2017)

    Article  Google Scholar 

  11. 11.

    K. Jiang, J. Nafziger, A. Wasserman, J. Chem. Phys. 148, 104113 (2018)

    ADS  Article  Google Scholar 

  12. 12.

    M.H. Cohen, A. Wasserman, K. Burke, J. Phys. Chem. A 111, 12447 (2007)

    Article  Google Scholar 

  13. 13.

    M. Cohen, A. Wasserman, R. Car, K. Burke, J. Phys. Chem. A 113, 2183 (2009)

    Article  Google Scholar 

  14. 14.

    P. Elliott, M. Cohen, A. Wasserman, K. Burke, J. Chem. Theory Comput. 5, 827 (2009)

    Article  Google Scholar 

  15. 15.

    P. Elliott, K. Burke, M. Cohen, A. Wasserman, Phys. Rev. A 82, 024501 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    R. Tang, J. Nafziger, A. Wasserman, Phys. Chem. Chem. Phys. 14, 7780 (2012)

    Article  Google Scholar 

  17. 17.

    J.H. Eberly, Phys. Rev. A 42, 5750 (1990)

    ADS  Article  Google Scholar 

  18. 18.

    M. Lein, E.K.U. Gross, V. Engel, J. Phys. B: At., Mol. Opt. Phys 33, 433 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    T.E. Baker, E.M. Stoudenmire, L.O. Wagner, K. Burke, S.R. White, Phys. Rev. B 91, 235141 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    M.A. Mosquera, A. Wasserman, Molecular Phys. 111, 505 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    B. Fornberg, Math. Comput. 51, 699 (1988)

    Article  Google Scholar 

  22. 22.

    N. Helbig, J.I. Fuks, M. Casula, M.J. Verstraete, M.A.L. Marques, I.V. Tokatly, A. Rubio, Phys. Rev. A 83, 032503 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    S.A. Shpilkin, E.A. Smolenskii, N.S. Zefirov, J. Chem. Inf. Comput. Sci. 36, 409 (1996)

    Article  Google Scholar 

  24. 24.

    C.G. Broyden, Math. Comput. 19, 577 (1965)

    Article  Google Scholar 

  25. 25.

    D.S. Jensen, A. Wasserman, Int. J. Quantum Chem. 118, e25425 (2018)

    Article  Google Scholar 

  26. 26.

    T.A. Wesołowski, A. Warshel, J. Phys. Chem. A 97, 8050 (1993)

    Article  Google Scholar 

  27. 27.

    C.R. Jacob, J. Neugebauer, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 325 (2014)

    Article  Google Scholar 

  28. 28.

    O.V. Gritsenko, E.J. Baerends, Phys. Rev. A 54, 1957 (1996)

    ADS  Article  Google Scholar 

  29. 29.

    N. Helbig, I.V. Tokatly, A. Rubio, J. Chem. Phys. 131, 224105 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    D.G. Tempel, T.J. Martínez, N.T. Maitra, J. Chem. Theory Comput. 5, 770 (2009)

    Article  Google Scholar 

  31. 31.

    J.I. Fuks, S.E.B. Nielsen, M. Ruggenthalerbc, N.T. Maitra, Phys. Chem. Chem. Phys. 18, 20976 (2016)

    Article  Google Scholar 

  32. 32.

    T. Gould, J. Toulouse, Phys. Rev. A 90, 050502(R) (2014)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Oueis.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oueis, Y., Wasserman, A. Exact partition potential for model systems of interacting electrons in 1-D. Eur. Phys. J. B 91, 247 (2018). https://doi.org/10.1140/epjb/e2018-90196-3

Download citation