An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables

Abstract

An integration and assembly strategy for efficient evaluation of the exchange correlation term in relativistic density functional theory within two-component Kohn–Sham framework is presented. Working equations that both take into account all the components of the spin magnetization and can exploit parallelism, optimized cache utilization, and micro-architecture specific-floating point operations are discussed in detail in this work. The presented assembly of the exchange correlation potential, suitable for both open and closed shell systems, uses spinor density and a set of auxiliary variables, ensuring easy retrofitting of existing density functionals designed for collinear density. The used auxiliary variables in this paper, based on the scalar and non-collinear density, can preserve non-zero exchange correlation magnetic field local torque, without violating the required overall zero torque, even for GGA functionals. This is mandatory to obtain accurate spin dynamics and proper time evolution of the magnetization. Spin frustrated hydrogen rings are used to validate the current implementation and phenoxy radicals of different sizes are used to monitor the performance. This approach is a step towards extending the applicability of relativistic two-component DFT to systems of large size (>100 atoms).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Article  Google Scholar 

  2. 2.

    W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    E.K.U. Gross, J.F. Dobson, M. Petersilka, in Density functional theory of time-dependent phenomena (Springer, Berlin, Heidelberg, 1996), pp. 81–172

  4. 4.

    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Article  Google Scholar 

  5. 5.

    M.E. Casida, Recent developments and applications in density functional theory (Elsevier, Amsterdam, Netherlands, 1996)

  6. 6.

    M.A.L. Marques, E.K.U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004)

    ADS  Article  Google Scholar 

  7. 7.

    K. Burke, J. Werschnik, E. Gross, J. Chem. Phys. 123, 062206 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    L.E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella, L. Genovese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 7, e1290 (2017)

    Article  Google Scholar 

  9. 9.

    P. Ring, P. Schuck, The nuclear many-body problem (Springer Science and Business Media, Berlin, Germany, 2004)

  10. 10.

    I. Shavitt, R.J. Bartlett, Many-body methods in chemistry and physics: MBPT and coupled-cluster theory (Cambridge University Press, Cambridge, U.K., 2009)

  11. 11.

    T. Helgaker, P. Jorgensen, J. Olsen, Molecular electronic-structure theory (John Wiley and Sons, New York, NY, 2014)

  12. 12.

    A.D. Becke, J. Chem. Phys. 88, 2547 (1988)

    ADS  Article  Google Scholar 

  13. 13.

    M.R. Pederson, K.A. Jackson, Phys. Rev. B 41, 7453 (1990)

    ADS  Article  Google Scholar 

  14. 14.

    C.W. Murray, N.C. Handy, G.J. Laming, Mol. Phys. 78, 997 (1993)

    ADS  Article  Google Scholar 

  15. 15.

    B.G. Johnson, in Modern density functional theory: A tool for chemistry, edited by J. Seminario, P. Politzer (Elsevier, Amsterdam, The Netherlands, 1995), Vol. 2, pp. 169–219

  16. 16.

    R. Stratmann, G.E. Scuseria, M.J. Frisch, Chem. Phys. Lett. 257, 213 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    A.M. Köster, R. Flores-Moreno, J.U. Reveles, J. Chem. Phys. 121, 681 (2004)

    ADS  Article  Google Scholar 

  18. 18.

    A.M. Burow, M. Sierka, J. Chem. Theory Comput. 7, 3097 (2011)

    Article  Google Scholar 

  19. 19.

    G. Lever, D.J. Cole, R. Lonsdale, K.E. Ranaghan, D.J. Wales, A.J. Mulholland, C.K. Skylaris, M.C. Payne, Phys. Chem. Lett. 5, 3614 (2014)

    Article  Google Scholar 

  20. 20.

    C. Curutchet, B. Mennucci, Chem. Rev. 117, 294 (2017)

    Article  Google Scholar 

  21. 21.

    G. Donati, A. Petrone, P. Caruso, N. Rega, Chem. Sci. 9, 1126 (2018)

    Article  Google Scholar 

  22. 22.

    J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659 (2006)

    Article  Google Scholar 

  23. 23.

    J. Aarons, M. Sarwar, D. Thompsett, C.K. Skylaris, J. Chem. Phys. 145, 220901 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    A. Petrone, J.J. Goings, X. Li, Phys. Rev. B 94, 165402 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    G. Donati, D.B. Lingerfelt, A. Petrone, N. Rega, X. Li, J. Phys. Chem. A 120, 7255 (2016)

    Article  Google Scholar 

  26. 26.

    N. Li, Z. Zhu, C.C. Chueh, H. Liu, B. Peng, A. Petrone, X. Li, L. Wang, A.K.Y. Jen, Adv. Energy Mater. 7, 1601307 (2016)

    Article  Google Scholar 

  27. 27.

    D.C. Gary, A. Petrone, X. Li, B.M. Cossairt, Chem. Commun. 53, 161 (2017)

    Article  Google Scholar 

  28. 28.

    J.J. Goings, J.M. Kasper, F. Egidi, S. Sun, X. Li, J. Chem. Phys. 145, 104107 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    D.B. Lingerfelt, D.B. Williams-Young, A. Petrone, X. Li, J. Chem. Theory Comput. 12, 935 (2016)

    Article  Google Scholar 

  30. 30.

    A. Petrone, D.B. Lingerfelt, D.B. Williams-Young, X. Li, J. Phys. Chem. Lett. 7, 4501 (2016)

    Article  Google Scholar 

  31. 31.

    A. Petrone, D.B. Williams-Young, D.B. Lingerfelt, X. Li, J. Phys. Chem. A 121, 3958 (2017)

    Article  Google Scholar 

  32. 32.

    A.L. Buchachenko, V.L. Berdinsky, Chem. Rev. 102, 603 (2002)

    Article  Google Scholar 

  33. 33.

    I. D’Amico, C.A. Ullrich, Phys. Status Solidi B 243, 2285 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011)

    Article  Google Scholar 

  35. 35.

    P.J. Hore, H. Mouritsen, Annu. Rev. Biophys. 45, 299 (2016)

    Article  Google Scholar 

  36. 36.

    E.K.U. Gross, R.M. Dreizler, Relativistic density functio- nal theory (Springer US, Boston, MA, 1984), pp. 353–379

  37. 37.

    K.G. Dyall, K.  Fægri, Jr., Introduction to relativistic quantum chemistry (Oxford University Press, Oxford, U.K., 2007)

  38. 38.

    P. Pyykkö, Annu. Rev. Phys. Chem. 63, 45 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    M. Reiher, A. Wolf, Relativistic quantum chemistry: the fundamental theory of molecular science (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany, 2015)

  40. 40.

    V.A. Soltamov, A.A. Soltamova, P.G. Baranov, I.I. Proskuryakov, Phys. Rev. Lett. 108, 226402 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    G. Thiering, A. Gali, Phys. Rev. B 96, 081115 (2017)

    ADS  Article  Google Scholar 

  42. 42.

    J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010)

    ADS  Article  Google Scholar 

  43. 43.

    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. OBrien, Nature 464, 45 (2010)

    ADS  Article  Google Scholar 

  44. 44.

    D.D. Awschalom, L.C. Bassett, A.S. Dzurak, E.L. Hu, J.R. Petta, Science 339, 1174 (2013)

    ADS  Article  Google Scholar 

  45. 45.

    T. Saue, T. Helgaker, J. Comput. Chem. 23, 814 (2002)

    Article  Google Scholar 

  46. 46.

    F. Wang, W. Liu, J. Chin. Chem. Soc. 50, 597 (2003)

    Article  Google Scholar 

  47. 47.

    D. Peng, W. Liu, Y. Xiao, L. Cheng, J. Chem. Phys. 127, 104106 (2007)

    ADS  Article  Google Scholar 

  48. 48.

    T. Saue, Chem. Phys. Chem. 12, 3077 (2011)

    Article  Google Scholar 

  49. 49.

    T. Saue, H.J.A. Jensen, J. Comput. Phys. 118, 522 (2003)

    Google Scholar 

  50. 50.

    J. Gao, W. Liu, B. Song, C. Liu, J. Chem. Phys. 121, 6658 (2004)

    ADS  Article  Google Scholar 

  51. 51.

    R. Bast, H.J.A. Jensen, T. Saue, Int. J. Quant. Chem. 109, 2091 (2009)

    ADS  Article  Google Scholar 

  52. 52.

    D. Williams-Young, F. Egidi, X. Li, J. Chem. Theory Comput. 12, 5379 (2016)

    Article  Google Scholar 

  53. 53.

    F. Egidi, S. Sun, J.J. Goings, G. Scalmani, M.J. Frisch, X. Li, J. Chem. Theory Comput. 13, 2591 (2017)

    Article  Google Scholar 

  54. 54.

    J. Gao, W. Zou, W. Liu, Y. Xiao, D. Peng, B. Song, C. Liu, J. Chem. Phys. 123, 054102 (2005)

    ADS  Article  Google Scholar 

  55. 55.

    G. Vignale, in Density functional theory (Springer, Boston, MA, 1995), pp. 485–511

  56. 56.

    T. Kreibich, E.K.U. Gross, E. Engel, Phys. Rev. A 57, 138 (1998)

    ADS  Article  Google Scholar 

  57. 57.

    W. Kohn, A. Savin, C.A. Ullrich, Int. J. Quant. Chem. 100, 20 (2004)

    Article  Google Scholar 

  58. 58.

    F.A. Buot, J. Dobson, R. Dreizler, E. Engel, E. Gross, M. Petersilka, A. Rajagopal, in Density functional theory II: relativistic and time dependent extensions (Springer, Berlin, Germany, 1996), Vol. 2

  59. 59.

    G. Vignale, M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987)

    ADS  Article  Google Scholar 

  60. 60.

    P. Romaniello, P.L. de Boeij, J. Chem. Phys. 127, 174111 (2007)

    ADS  Article  Google Scholar 

  61. 61.

    S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J.K. Dewhurst, E.K.U. Gross, Phys. Rev. B 76, 100401 (2007)

    ADS  Article  Google Scholar 

  62. 62.

    N. Helbig, S. Kurth, S. Pittalis, E. Räsänen, E.K.U. Gross, Phys. Rev. B 77, 245106 (2008)

    ADS  Article  Google Scholar 

  63. 63.

    A. Soncini, A.M. Teale, T. Helgaker, F.D. Proft, D.J. Tozer, J. Chem. Phys. 129, 074101 (2008)

    ADS  Article  Google Scholar 

  64. 64.

    A.M. Lee, N.C. Handy, S.M. Colwell, J. Chem. Phys. 103, 10095 (1995)

    ADS  Article  Google Scholar 

  65. 65.

    L.M. Sandratskii, Adv. Phys. 47, 91 (1998)

    ADS  Article  Google Scholar 

  66. 66.

    C.A. Ullrich, J. Chem. Theory Comput. 5, 859 (2009)

    Article  Google Scholar 

  67. 67.

    F.G. Eich, E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

    ADS  Article  Google Scholar 

  68. 68.

    J.E. Bates, F. Furche, J. Chem. Phys. 137, 164105 (2012)

    ADS  Article  Google Scholar 

  69. 69.

    J.W. Furness, J. Verbeke, E.I. Tellgren, S. Stopkowicz, U. Ekström, T. Helgaker, A.M. Teale, J. Chem. Theory Comput. 11, 4169 (2015)

    Article  Google Scholar 

  70. 70.

    C.R. Jacob, M. Reiher, Int. J. Quant. Chem. 112, 3661 (2012)

    Article  Google Scholar 

  71. 71.

    F. Perez, F. Baboux, C.A. Ullrich, I. D’Amico, G. Vignale, G. Karczewski, T. Wojtowicz, Phys. Rev. Lett. 117, 137204 (2016)

    ADS  Article  Google Scholar 

  72. 72.

    K. Capelle, G. Vignale, C.A. Ullrich, Phys. Rev. B 81, 125114 (2010)

    ADS  Article  Google Scholar 

  73. 73.

    S. Karimi, F. Baboux, F. Perez, C.A. Ullrich, G. Karczewski, T. Wojtowicz, Phys. Rev. B 96, 045301 (2017)

    ADS  Article  Google Scholar 

  74. 74.

    E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993)

    ADS  Article  Google Scholar 

  75. 75.

    K.G. Dyall, J. Chem. Phys. 106, 9618 (1997)

    ADS  Article  Google Scholar 

  76. 76.

    W. Kutzelnigg, W. Liu, J. Chem. Phys. 123, 241102 (2005)

    ADS  Article  Google Scholar 

  77. 77.

    M. Iliaš, T. Saue, J. Chem. Phys. 126, 064102 (2007)

    ADS  Article  Google Scholar 

  78. 78.

    J.J. Goings, F. Egidi, X. Li, Int. J. Quant. Chem. 118, e25398 (2018)

    Article  Google Scholar 

  79. 79.

    C. Van Wüllen, J. Comput. Chem. 23, 779 (2002)

    Article  Google Scholar 

  80. 80.

    F. Wang, T. Ziegler, J. Chem. Phys. 121, 12191 (2004)

    ADS  Article  Google Scholar 

  81. 81.

    D. Peng, W. Zou, W. Liu, J. Chem. Phys. 123, 144101 (2005)

    ADS  Article  Google Scholar 

  82. 82.

    J.E. Peralta, G.E. Scuseria, M.J. Frisch, Phys. Rev. B 75, 125119 (2007)

    ADS  Article  Google Scholar 

  83. 83.

    G. Scalmani, M.J. Frisch, J. Chem. Theory Comput. 8, 2193 (2012)

    Article  Google Scholar 

  84. 84.

    I.W. Bulik, G. Scalmani, M.J. Frisch, G.E. Scuseria, Phys. Rev. B 87, 035117 (2013)

    ADS  Article  Google Scholar 

  85. 85.

    O. Fossgaard, O. Gropen, M.C. Valero, T. Saue, J. Chem. Phys. 118, 10418 (2003)

    ADS  Article  Google Scholar 

  86. 86.

    H. Eschrig, V.D.P. Servedio, J. Comput. Chem. 20, 23 (1999)

    Article  Google Scholar 

  87. 87.

    J. Anton, B. Fricke, E. Engel, Phys. Rev. A 69, 012505 (2004)

    ADS  Article  Google Scholar 

  88. 88.

    K. Capelle, G. Vignale, B.L. Györffy, Phys. Rev. Lett. 87, 206403 (2001)

    ADS  Article  Google Scholar 

  89. 89.

    K. Capelle, B.L. Gyorffy, Europhys. Lett. 61, 354 (2003)

    ADS  Article  Google Scholar 

  90. 90.

    S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, E.K.U. Gross, Phys. Rev. Lett. 98, 196405 (2007)

    ADS  Article  Google Scholar 

  91. 91.

    O. Visser, P. Aerts, D. Hegarty, W. Nieuwpoort, Chem. Phys. Lett. 134, 34 (1987)

    ADS  Article  Google Scholar 

  92. 92.

    W. Liu, Mol. Phys. 108, 1679 (2010)

    ADS  Article  Google Scholar 

  93. 93.

    A. Wolf, M. Reiher, B.A. Hess, J. Chem. Phys. 117, 9215 (2002)

    ADS  Article  Google Scholar 

  94. 94.

    M. Douglas, N.M. Kroll, Ann. Phys. 82, 89 (1974)

    ADS  Article  Google Scholar 

  95. 95.

    B.A. Hess, Phys. Rev. A 33, 3742 (1986)

    ADS  Article  Google Scholar 

  96. 96.

    W. Liu, D. Peng, J. Chem. Phys. 125, 044102 (2006)

    ADS  Article  Google Scholar 

  97. 97.

    F. Egidi, J.J. Goings, M.J. Frisch, X. Li, J. Chem. Theory Comput. 12, 3711 (2016)

    Article  Google Scholar 

  98. 98.

    D. Peng, N. Middendorf, F. Weigend, M. Reiher, J. Chem. Phys. 138, 184105 (2013)

    ADS  Article  Google Scholar 

  99. 99.

    W. Liu, Natl. Sci. Rev. 3, 204 (2016)

    Article  Google Scholar 

  100. 100.

    M.A. Marques, M.J. Oliveira, T. Burnus, Comp. Phys. Comm. 183, 2272 (2012)

    ADS  Article  Google Scholar 

  101. 101.

    S. Lehtola, C. Steigemann, M.J. Oliveira, M.A. Marques, SoftwareX 7, 1 (2018)

    ADS  Article  Google Scholar 

  102. 102.

    C.A. Ullrich, Phys. Rev. B 72, 073102 (2005)

    ADS  Article  Google Scholar 

  103. 103.

    F.G. Eich, S. Pittalis, G. Vignale, Phys. Rev. B 88, 245102 (2013)

    ADS  Article  Google Scholar 

  104. 104.

    K. Goto, R.A. Geijn, ACM Trans. Math. Softw. 34, 12 (2008)

    Article  Google Scholar 

  105. 105.

    Q. Wang, X. Zhang, Y. Zhang, Q. Yi, AUGEM: automatically generate high performance dense linear algebra kernels on x86 CPUs, in Proceedings of the international conference on high performance computing, networking, storage and analysis (ACM, 2013), p. 25

  106. 106.

    Z. Xianyi, W. Qian, Z. Yunquan, Model-driven level 3 BLAS performance optimization on loongson 3A processor, in 2012 IEEE 18th international conference on parallel and distributed systems (ICPADS) (IEEE, 2012), pp. 684–691

  107. 107.

    F.G. Van Zee, R.A. van de Geijn, ACM Trans. Math. Softw. 41, 14 (2015)

    Google Scholar 

  108. 108.

    Intel(r) math kernel library, 2016, 18.0. update 1 for linux

  109. 109.

    V. Lebedev, Sib. Math. J. 18, 99 (1977)

    Article  Google Scholar 

  110. 110.

    S. Yamanaka, D. Yamaki, Y. Shigeta, H. Nagao, K. Yamaguchi, Int. J. Quant. Chem. 84, 670 (2001)

    Article  Google Scholar 

  111. 111.

    J. Schimpl, H.M. Petrilli, P.E. Bloc¨hl, J. Am. Chem. Soc. 125, 15772 (2003)

    Article  Google Scholar 

  112. 112.

    S. Luo, I. Rivalta, V. Batista, D.G. Truhlar, J. Phys. Chem. Lett. 2, 2629 (2011)

    Article  Google Scholar 

  113. 113.

    S. Luo, D.G. Truhlar, J. Chem. Theory Comput. 9, 5349 (2013)

    Article  Google Scholar 

  114. 114.

    J.J. Goings, F. Ding, M.J. Frisch, X. Li, J. Chem. Phys. 142, 154109 (2015)

    ADS  Article  Google Scholar 

  115. 115.

    X. Li, E.F. Valeev, D. Williams-Young, A. Petrone, J. Goings, J. Kasper, F. Ding, H. Liu, S. Sun, P. Lestrange, Chronus quantum, beta 2 version, 2017, http://www.chronusquantum.org

  116. 116.

    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    ADS  Article  Google Scholar 

  117. 117.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    ADS  Article  Google Scholar 

  118. 118.

    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)

    ADS  Article  Google Scholar 

  119. 119.

    X. Li, S.M. Smith, A.N. Markevitch, D.A. Romanov, R.J. Levis, H.B. Schlegel, Phys. Chem. Chem. Phys. 7, 233 (2005)

    Article  Google Scholar 

  120. 120.

    F. Ding, J.J. Goings, M.J. Frisch, X. Li, J. Chem. Phys. 141, 214111 (2014)

    ADS  Article  Google Scholar 

  121. 121.

    L. Konecny, M. Kadek, S. Komorovsky, O.L. Malkina, K. Ruud, M. Repisky, J. Chem. Theory Comput. 12, 5823 (2016)

    Article  Google Scholar 

  122. 122.

    J.J. Goings, P.J. Lestrange, X. Li, WIREs Comput. Mol. Sci. 8, e1341 (2018)

    Article  Google Scholar 

  123. 123.

    R. Beck, A. Petrone, J.M. Kasper, M.J. Crane, P.J. Pauzauskie, X. Li, J. Phys. Chem. C 14, 1998 (2018)

    Google Scholar 

  124. 124.

    J.C. Slater, Phys. Rev. 81, 385 (1951)

    ADS  Article  Google Scholar 

  125. 125.

    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    ADS  Article  Google Scholar 

  126. 126.

    T. Noro, M. Sekiya, T. Koga, Theor. Chem. Acc. 131, 1124 (2012)

    Article  Google Scholar 

  127. 127.

    A. Bruner, D. LaMaster, K. Lopata, J. Chem. Theory Comput. 12, 3741 (2016)

    Article  Google Scholar 

  128. 128.

    M. Repisky, L. Konecny, M. Kadek, S. Komorovsky, O.L. Malkin, V.G. Malkin, K. Ruud, J. Chem. Theory Comput. 11, 980 (2015)

    Article  Google Scholar 

  129. 129.

    Z. Li, B. Suo, Y. Zhang, Y. Xiao, W. Liu, Mol. Phys. 111, 3741 (2013)

    ADS  Article  Google Scholar 

  130. 130.

    F. Wang, T. Ziegler, E. van Lenthe, S. van Gisbergen, E. Jan Baerends, J. Chem. Phys. 122, 204103 (2005)

    ADS  Article  Google Scholar 

  131. 131.

    M. Kühn, F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)

    Article  Google Scholar 

  132. 132.

    A. Nakata, T. Tsuneda, K. Hirao, J. Chem. Phys. 135, 224106 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Li.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrone, A., Williams-Young, D.B., Sun, S. et al. An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables. Eur. Phys. J. B 91, 169 (2018). https://doi.org/10.1140/epjb/e2018-90170-1

Download citation