Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation


The particle-particle random phase approximation (pp-RPA) has been deployed to study the spin-state energetics of transition metal (TM) complexes for the first time in this work. Namely, we designed and implemented a non-canonical reference pp-RPA protocol that is capable of capturing the singlet low-spin (LS) – triplet intermediate-spin (IS) excitation process of iron(II) complexes; herein we applied this method to iron-porphyrin related heme derivatives with clearly defined LS and IS electronic states. Coupled to the CAM-B3LYP functional and to Dunning-type basis sets, we utilized both the active-space and Davidson methods to solve the pp-RPA equation effectively to obtain vertical singlet–triplet excitation energies. Correcting these vertical metrics with a structural relaxation factor for each species, we evaluated the relative stability of LS and IS electronic states. Comparison of the pp-RPA results to established ab initio data revealed that pp-RPA describes well excitation energies and related relative spin state stabilities if the transition is based on non-bonding d-orbitals, such as complexes without an axial ligand in the investigated set of molecules. But it notably overestimates the stability of the singlet LS state to the triplet IS state in complexes, where the d-orbitals at which the excitation is centered have bonding or antibonding character.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. Costas, J.N. Harvey, Nat. Chem. 5, 7 (2013)

    Article  Google Scholar 

  2. 2.

    S. Shaik, H. Chen, D. Janardanan, Nat. Chem. 3, 19 (2011)

    Article  Google Scholar 

  3. 3.

    J.N. Harvey, Phys. Chem. Chem. Phys. 9, 331 (2007)

    Article  Google Scholar 

  4. 4.

    G. Xue et al., Nat. Chem. 2, 400 (2010)

    Article  Google Scholar 

  5. 5.

    R.L. Lord, F.A. Schultz, M.-H. Baik, J. Am. Chem. Soc. 131, 6189 (2009)

    Article  Google Scholar 

  6. 6.

    M. Swart, Int. J. Quantum Chem. 113, 2 (2013)

    Article  Google Scholar 

  7. 7.

    M. Reiher, O. Salomon, B.A. Hess, Theor. Chem. Acc. 107, 48 (2001)

    Article  Google Scholar 

  8. 8.

    B. Pinter, A. Chankisjijev, P. Geerlings, J.N. Harvey, F. De Proft, Chem. Eur. J. 24, 5281 (2008)

    Article  Google Scholar 

  9. 9.

    J.N. Harvey, Annu. Rep. Sect. C (Phys. Chem.) 102, 203 (2006)

    Article  Google Scholar 

  10. 10.

    J.N. Harvey, inPrinciples and Applications of Density Functional Theory in Inorganic Chemistry I, edited by N. Kaltsoyannis, J.E. McGrady (Springer, Berlin, Heidelberg, 2004), p. 151

  11. 11.

    M. Radon, Phys. Chem. Chem. Phys. 16, 14479 (2014)

    Article  Google Scholar 

  12. 12.

    M. Swart, Inorg. Chim. Acta 360, 179 (2007)

    Article  Google Scholar 

  13. 13.

    M. Swart, J. Chem. Theory Comput. 4, 2057 (2008)

    Article  Google Scholar 

  14. 14.

    T.F. Hughes, R.A. Friesner, J. Chem. Theory Comput. 7, 19 (2011)

    Article  Google Scholar 

  15. 15.

    R.A. Friesner, E.H. Knoll, Y. Cao, J. Chem. Phys. 125, 124107 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    D. Rinaldo et al., J. Chem. Phys. 129, 164108 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012)

    Article  Google Scholar 

  18. 18.

    P. Mori-Sánchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 100, 146401 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    K. Pierloot, Mol. Phys. 101, 2083 (2003)

    ADS  Article  Google Scholar 

  20. 20.

    A.D. Becke, J. Chem. Phys. 119, 2972 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    A.D. Becke, J. Chem. Phys. 122, 064101 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    D. Cremer, Mol. Phys. 99, 1899 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    V. Polo, E. Kraka, D. Cremer, Mol. Phys. 100, 1771 (2002)

    ADS  Article  Google Scholar 

  24. 24.

    M.J.G. Peach, D.J. Tozer, N.C. Handy, Int. J. Quantum Chem. 111, 563 (2011)

    Article  Google Scholar 

  25. 25.

    Y. Yang, H. van Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    D. Peng et al., J. Chem. Phys. 140, 18A522 (2014)

    Article  Google Scholar 

  27. 27.

    P. Ring, P. Schuck,The Nuclear Many-Body Problem (Springer Science & Business Media, Berlin, Heidelberg, Germany, 2004)

  28. 28.

    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    ADS  Article  Google Scholar 

  29. 29.

    H. van Aggelen, Y. Yang, W. Yang, J. Chem. Phys. 140, 18A511 (2014)

    Article  Google Scholar 

  30. 30.

    H. van Aggelen, Y. Yang, W. Yang, Phys. Rev. A. 88, 030501 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    M. Radoñ, J. Chem. Theory Comput. 10, 2306 (2014)

    Article  Google Scholar 

  32. 32.

    K.P. Kepp, Coord. Chem. Rev. 257, 196 (2013)

    Article  Google Scholar 

  33. 33.

    Y. Yang et al., J. Phys. Chem. A. 119, 4923 (2015)

    Article  Google Scholar 

  34. 34.

    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Article  Google Scholar 

  35. 35.

    M.A.L. Marques, E.K.U. Gross, inA Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira, M.A.L. Marques (Springer, Berlin, Heidelberg, 2003), p. 144

  36. 36.

    D. Zhang, W. Yang, J. Chem. Phys. 145, 144105 (2016)

    ADS  Article  Google Scholar 

  37. 37.

    Y. Yang, H.V. Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013)

    ADS  Article  Google Scholar 

  38. 38.

    Y. Jin et al., J. Phys. Chem. Lett. 8, 4746 (2017)

    Article  Google Scholar 

  39. 39.

    Z. Chen et al., J. Phys. Chem. Lett. 8, 4479 (2017)

    Article  Google Scholar 

  40. 40.

    Y. Yang, E.R. Davidson, W. Yang, Proc. Natl. Acad. Sci. 113, E5098 (2016)

    Article  Google Scholar 

  41. 41.

    K. Pierloot, Q.M. Phung, A. Domingo, J. Chem. Theory Comput. 13, 537 (2017)

    Article  Google Scholar 

  42. 42.

    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    ADS  Article  Google Scholar 

  43. 43.

    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  Google Scholar 

  44. 44.

    F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)

    Article  Google Scholar 

  45. 45.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988)

    ADS  Article  Google Scholar 

  46. 46.

    A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    ADS  Article  Google Scholar 

  47. 47.

    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

    ADS  Article  Google Scholar 

  48. 48.

    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    ADS  Article  Google Scholar 

  49. 49.

    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison , J. Chem. Phys. 96, 6796 (1992)

    ADS  Article  Google Scholar 

  50. 50.

    D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993)

    ADS  Article  Google Scholar 

  51. 51.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, J. Farkas, B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox,Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, CT, USA, 2009)

  52. 52.

    Y. Yang et al., J. Chem. Phys. 141, 124104 (2014)

    ADS  Article  Google Scholar 

  53. 53.

    R. Rüger et al., J. Chem. Theory Comput. 11, 157 (2015)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Weitao Yang.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Supplementary material in the form of one PDF file available from the Journal web page at https://doi.org/10.1140/epjb/e2018-90169-6

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinter, B., Al-Saadon, R., Chen, Z. et al. Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation. Eur. Phys. J. B 91, 270 (2018). https://doi.org/10.1140/epjb/e2018-90169-6

Download citation