Advertisement

Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation

  • 101 Accesses

  • 1 Citations

Abstract

The particle-particle random phase approximation (pp-RPA) has been deployed to study the spin-state energetics of transition metal (TM) complexes for the first time in this work. Namely, we designed and implemented a non-canonical reference pp-RPA protocol that is capable of capturing the singlet low-spin (LS) – triplet intermediate-spin (IS) excitation process of iron(II) complexes; herein we applied this method to iron-porphyrin related heme derivatives with clearly defined LS and IS electronic states. Coupled to the CAM-B3LYP functional and to Dunning-type basis sets, we utilized both the active-space and Davidson methods to solve the pp-RPA equation effectively to obtain vertical singlet–triplet excitation energies. Correcting these vertical metrics with a structural relaxation factor for each species, we evaluated the relative stability of LS and IS electronic states. Comparison of the pp-RPA results to established ab initio data revealed that pp-RPA describes well excitation energies and related relative spin state stabilities if the transition is based on non-bonding d-orbitals, such as complexes without an axial ligand in the investigated set of molecules. But it notably overestimates the stability of the singlet LS state to the triplet IS state in complexes, where the d-orbitals at which the excitation is centered have bonding or antibonding character.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    M. Costas, J.N. Harvey, Nat. Chem. 5, 7 (2013)

  2. 2.

    S. Shaik, H. Chen, D. Janardanan, Nat. Chem. 3, 19 (2011)

  3. 3.

    J.N. Harvey, Phys. Chem. Chem. Phys. 9, 331 (2007)

  4. 4.

    G. Xue et al., Nat. Chem. 2, 400 (2010)

  5. 5.

    R.L. Lord, F.A. Schultz, M.-H. Baik, J. Am. Chem. Soc. 131, 6189 (2009)

  6. 6.

    M. Swart, Int. J. Quantum Chem. 113, 2 (2013)

  7. 7.

    M. Reiher, O. Salomon, B.A. Hess, Theor. Chem. Acc. 107, 48 (2001)

  8. 8.

    B. Pinter, A. Chankisjijev, P. Geerlings, J.N. Harvey, F. De Proft, Chem. Eur. J. 24, 5281 (2008)

  9. 9.

    J.N. Harvey, Annu. Rep. Sect. C (Phys. Chem.) 102, 203 (2006)

  10. 10.

    J.N. Harvey, in Principles and Applications of Density Functional Theory in Inorganic Chemistry I, edited by N. Kaltsoyannis, J.E. McGrady (Springer, Berlin, Heidelberg, 2004), p. 151

  11. 11.

    M. Radon, Phys. Chem. Chem. Phys. 16, 14479 (2014)

  12. 12.

    M. Swart, Inorg. Chim. Acta 360, 179 (2007)

  13. 13.

    M. Swart, J. Chem. Theory Comput. 4, 2057 (2008)

  14. 14.

    T.F. Hughes, R.A. Friesner, J. Chem. Theory Comput. 7, 19 (2011)

  15. 15.

    R.A. Friesner, E.H. Knoll, Y. Cao, J. Chem. Phys. 125, 124107 (2006)

  16. 16.

    D. Rinaldo et al., J. Chem. Phys. 129, 164108 (2008)

  17. 17.

    A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012)

  18. 18.

    P. Mori-Sánchez, A.J. Cohen, W. Yang, Phys. Rev. Lett. 100, 146401 (2008)

  19. 19.

    K. Pierloot, Mol. Phys. 101, 2083 (2003)

  20. 20.

    A.D. Becke, J. Chem. Phys. 119, 2972 (2003)

  21. 21.

    A.D. Becke, J. Chem. Phys. 122, 064101 (2005)

  22. 22.

    D. Cremer, Mol. Phys. 99, 1899 (2001)

  23. 23.

    V. Polo, E. Kraka, D. Cremer, Mol. Phys. 100, 1771 (2002)

  24. 24.

    M.J.G. Peach, D.J. Tozer, N.C. Handy, Int. J. Quantum Chem. 111, 563 (2011)

  25. 25.

    Y. Yang, H. van Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013)

  26. 26.

    D. Peng et al., J. Chem. Phys. 140, 18A522 (2014)

  27. 27.

    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer Science & Business Media, Berlin, Heidelberg, Germany, 2004)

  28. 28.

    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

  29. 29.

    H. van Aggelen, Y. Yang, W. Yang, J. Chem. Phys. 140, 18A511 (2014)

  30. 30.

    H. van Aggelen, Y. Yang, W. Yang, Phys. Rev. A. 88, 030501 (2013)

  31. 31.

    M. Radoñ, J. Chem. Theory Comput. 10, 2306 (2014)

  32. 32.

    K.P. Kepp, Coord. Chem. Rev. 257, 196 (2013)

  33. 33.

    Y. Yang et al., J. Phys. Chem. A. 119, 4923 (2015)

  34. 34.

    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

  35. 35.

    M.A.L. Marques, E.K.U. Gross, in A Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira, M.A.L. Marques (Springer, Berlin, Heidelberg, 2003), p. 144

  36. 36.

    D. Zhang, W. Yang, J. Chem. Phys. 145, 144105 (2016)

  37. 37.

    Y. Yang, H.V. Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013)

  38. 38.

    Y. Jin et al., J. Phys. Chem. Lett. 8, 4746 (2017)

  39. 39.

    Z. Chen et al., J. Phys. Chem. Lett. 8, 4479 (2017)

  40. 40.

    Y. Yang, E.R. Davidson, W. Yang, Proc. Natl. Acad. Sci. 113, E5098 (2016)

  41. 41.

    K. Pierloot, Q.M. Phung, A. Domingo, J. Chem. Theory Comput. 13, 537 (2017)

  42. 42.

    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

  43. 43.

    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

  44. 44.

    F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)

  45. 45.

    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988)

  46. 46.

    A.D. Becke, Phys. Rev. A 38, 3098 (1988)

  47. 47.

    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

  48. 48.

    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

  49. 49.

    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison , J. Chem. Phys. 96, 6796 (1992)

  50. 50.

    D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993)

  51. 51.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, J. Farkas, B. Foresman, J. V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford, CT, USA, 2009)

  52. 52.

    Y. Yang et al., J. Chem. Phys. 141, 124104 (2014)

  53. 53.

    R. Rüger et al., J. Chem. Theory Comput. 11, 157 (2015)

Download references

Author information

Correspondence to Weitao Yang.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Supplementary material in the form of one PDF file available from the Journal web page at https://doi.org/10.1140/epjb/e2018-90169-6

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinter, B., Al-Saadon, R., Chen, Z. et al. Spin-state energetics of iron(II) porphyrin from the particle-particle random phase approximation. Eur. Phys. J. B 91, 270 (2018) doi:10.1140/epjb/e2018-90169-6

Download citation