Superconductivity in hydrogenated carbon nanostructures

Abstract

We present an application of density functional theory for superconductors to superconductivity in hydrogenated carbon nanotubes and fullerane (hydrogenated fullerene). We show that these systems are chemically similar to graphane (hydrogenated graphene) and like graphane, upon hole doping, develop a strong electron phonon coupling. This could lead to superconducting states with critical temperatures approaching 100 K, however this possibility depends crucially on if and how metallization is achieved.

References

  1. 1.

    P.B. Allen, B. Mitrović, in Theory of superconducting Tc, Solid State Physics (Academic Press, New York, 1983), Vol. 37

  2. 2.

    W.L. McMillan, Phys. Rev. 167, 331 (1968)

    ADS  Article  Google Scholar 

  3. 3.

    L.N. Oliveira, E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 60, 2430 (1988)

    ADS  Article  Google Scholar 

  4. 4.

    S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    L. Hedin, Phys. Rev. 139, A796 (1965)

    ADS  Article  Google Scholar 

  6. 6.

    M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    ADS  Article  Google Scholar 

  7. 7.

    M. Amsler, S. Goedecker, J. Chem. Phys. 133, 224104 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    S. Goedecker, J. Chem. Phys. 120, 9911 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175, 713 (2006)

    ADS  Article  Google Scholar 

  10. 10.

    Y. Wang, J. Lv, L. Zhu, Y. Ma, Comput. Phys. Commun. 183, 2063 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    C.J. Pickard, R. Needs, J. Phys.: Condens. Matter 23, 053201 (2011)

    ADS  Google Scholar 

  12. 12.

    H. Rosner, A. Kitaigorodsky, W.E. Pickett, Phys. Rev. Lett. 88, 127001 (2002)

    ADS  Article  Google Scholar 

  13. 13.

    L. Boeri, J. Kortus, O.K. Andersen, Phys. Rev. Lett. 93, 237002 (2004)

    ADS  Article  Google Scholar 

  14. 14.

    L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He, G. Zou, Solid State Commun. 141, 610 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    A.N. Kolmogorov, M. Calandra, S. Curtarolo, Phys. Rev. B 78, 094520 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    H.J. Choi, S.G. Louie, M.L. Cohen, Phys. Rev. B 80, 064503 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    A.N. Kolmogorov, S. Shah, E.R. Margine, A.F. Bialon, T. Hammerschmidt, R. Drautz, Phys. Rev. Lett. 105, 217003 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    J.A. Flores-Livas, M. Amsler, T.J. Lenosky, L. Lehtovaara, S. Botti, M.A.L. Marques, S. Goedecker, Phys. Rev. Lett. 108, 117004 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012)

    Article  Google Scholar 

  20. 20.

    Y. Li, J. Hao, H. Liu, Y. Li, Y. Ma, J. Chem. Phys. 140, (2014)

  21. 21.

    D. Hapiuk, M. Marques, P. Mélinon, S. Botti, B. Masenelli, J. Flores-Livas, New J. Phys. 17, 043034 (2015)

    ADS  Article  Google Scholar 

  22. 22.

    C. Kokail, C. Heil, L. Boeri, Phys. Rev. B 94, 060502 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    A.J. Flores-Livas, A. Sanna, E. Gross, Eur. Phys. J. B 89, 63 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    A. Sanna, A.V. Fedorov, N.I. Verbitskiy, J. Fink, C. Krellner, L. Petaccia, A. Chikina, D.Y. Usachov, A. Grüneis, G. Profeta, 2D Mater. 3, 025031 (2016)

    Article  Google Scholar 

  25. 25.

    D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, T. Cui, Sci. Rep. 4, 6968 (2014)

    ADS  Article  Google Scholar 

  26. 26.

    A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)

    ADS  Article  Google Scholar 

  27. 27.

    G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105, 037002 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    M.H.F. Sluiter, Y. Kawazoe, Phys. Rev. B 68, 085410 (2003)

    ADS  Article  Google Scholar 

  29. 29.

    J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    N. Lu, Z. Li, J. Yang, J. Phys. Chem. C 113, 16741 (2009)

    Article  Google Scholar 

  31. 31.

    D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    ADS  Article  Google Scholar 

  32. 32.

    C. Zhou, S. Chen, J. Lou, J. Wang, Q. Yang, C. Liu, D. Huang, T. Zhu, Nanoscale Res. Lett. 9, 26 (2014)

    Article  Google Scholar 

  33. 33.

    N. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968)

    ADS  Article  Google Scholar 

  34. 34.

    A. Linscheid, A. Sanna, A. Floris, E.K.U. Gross, Phys. Rev. Lett. 115, 097002 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    S. Vonsovsky, Y. Izyumov, E. Kurmaev, E. Brandt, A. Zavarnitsyn, Superconductivity of Transition Metals: Their Alloys and Compounds. Springer Series in Solid-State Sciences Series (Springer London, Limited, 1982)

  36. 36.

    E.R. Margine, F. Giustino, Phys. Rev. B 87, 024505 (2013)

    ADS  Article  Google Scholar 

  37. 37.

    A. Sanna, J.A. Flores-Livas, A. Davydov, G. Profeta, K. Dewhurst, S. Sharma, E.K.U. Gross, J. Phys. Soc. Jpn. 87, 041012 (2018)

    ADS  Article  Google Scholar 

  38. 38.

    A. Sanna, S. Pittalis, J.K. Dewhurst, M. Monni, S. Sharma, G. Ummarino, S. Massidda, E.K.U. Gross, Phys. Rev. B 85, 184514 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    E.K.U. Gross, S. Kurth, Int. J. Quantum Chem. 40, 289 (1991)

    Article  Google Scholar 

  40. 40.

    S. Kurth, M. Marques, M. Lüders, E.K.U. Gross, Phys. Rev. Lett. 83, 2628 (1999)

    ADS  Article  Google Scholar 

  41. 41.

    M. Lüders, M.A.L. Marques, N.N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 72, 024545 (2005)

    ADS  Article  Google Scholar 

  42. 42.

    M.A.L. Marques, M. Lüders, N.N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E.K.U. Gross, S. Massidda, Phys. Rev. B 72, 024546 (2005)

    ADS  Article  Google Scholar 

  43. 43.

    O.J. Wacker, R. Kümmel, E.K.U. Gross, Phys. Rev. Lett. 73, 2915 (1994)

    ADS  Article  Google Scholar 

  44. 44.

    M. Lders, E.K.U. Gross, Int. J. Quantum Chem. 56, 521 (1995)

    Article  Google Scholar 

  45. 45.

    A. Linscheid, A. Sanna, E.K.U. Gross, Phys. Rev. B 92, 024506 (2015)

    ADS  Article  Google Scholar 

  46. 46.

    A. Linscheid, A. Sanna, F. Essenberger, E.K.U. Gross, Phys. Rev. B 92, 024505 (2015)

    ADS  Article  Google Scholar 

  47. 47.

    A. Floris, G. Profeta, N.N. Lathiotakis, M. Lüders, M.A.L. Marques, C. Franchini, E.K.U. Gross, A. Continenza, S. Massidda, Phys. Rev. Lett. 94, 037004 (2005)

    ADS  Article  Google Scholar 

  48. 48.

    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. Lett. 100, 257001 (2008)

    ADS  Article  Google Scholar 

  49. 49.

    G. Profeta, C. Franchini, N. Lathiotakis, A. Floris, A. Sanna, M.A.L. Marques, M. Lüders, S. Massidda, E.K.U. Gross, A. Continenza, Phys. Rev. Lett. 96, 047003 (2006)

    ADS  Article  Google Scholar 

  50. 50.

    R.S. Gonnelli, D. Daghero, D. Delaude, M. Tortello, G.A. Ummarino, V.A. Stepanov, J.S. Kim, R.K. Kremer, A. Sanna, G. Profeta, S. Massidda, Phys. Rev. Lett. 100, 207004 (2008)

    ADS  Article  Google Scholar 

  51. 51.

    A. Sanna, G. Profeta, A. Floris, A. Marini, E.K.U. Gross, S. Massidda, Phys. Rev. B 75, 020511 (2007)

    ADS  Article  Google Scholar 

  52. 52.

    A. Floris, A. Sanna, M. Lüders, G. Profeta, N. Lathiotakis, M. Marques, C. Franchini, E. Gross, A. Continenza, S. Massidda, Physica C: Supercond. 456, 45 (2007)

    ADS  Article  Google Scholar 

  53. 53.

    A. Sanna, C. Franchini, A. Floris, G. Profeta, N.N. Lathiotakis, M. Lüders, M.A.L. Marques, E.K.U. Gross, A. Continenza, S. Massidda, Phys. Rev. B 73, 144512 (2006)

    ADS  Article  Google Scholar 

  54. 54.

    A. Floris, A. Sanna, S. Massidda, E.K.U. Gross, Phys. Rev. B 75, 054508 (2007)

    ADS  Article  Google Scholar 

  55. 55.

    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  56. 56.

    P.G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, 1966)

  57. 57.

    S. Kurth, Exchange-Correlation Functionals for Inhomogeneous Superconductors, Ph.D. thesis, Bayerische Julius-Maximilians Universität Würzburg, 1995

  58. 58.

    T. Kreibich, E.K.U. Gross, Phys. Rev. Lett. 86, 2984 (2001)

    ADS  Article  Google Scholar 

  59. 59.

    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Article  Google Scholar 

  60. 60.

    N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    ADS  Article  Google Scholar 

  61. 61.

    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Article  Google Scholar 

  62. 62.

    N.N. Bogoljubov, V.V. Tolmachov, D.V. Åirkov, Fortschr. Phys. 6, 605 (1958)

    Article  Google Scholar 

  63. 63.

    F. Giustino, Rev. Mod. Phys. 89, 015003 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  64. 64.

    A. Marini, S. Poncé, X. Gonze, Phys. Rev. B 91, 224310 (2015)

    ADS  Article  Google Scholar 

  65. 65.

    S.Y. Savrasov, D.Y. Savrasov, O.K. Andersen, Phys. Rev. Lett. 72, 372 (1994)

    ADS  Article  Google Scholar 

  66. 66.

    S. de Gironcoli, Phys. Rev. B 51, 6773 (1995)

    ADS  Article  Google Scholar 

  67. 67.

    M. Lüders, Densityfunctional theory for superconductors, a first principles approach to the SC phase, Ph.D. thesis, Bayerische Julius-Maximilians Universität Würzburg, 1998

  68. 68.

    A. Sanna, E.K.U. Gross, To be published

  69. 69.

    M. Marques, Density functional theory for superconductors, exchange and correlation potentials for inhomogeneous systems, Ph.D. thesis, Bayerische Julius-Maximilians Universität Würzburg, 2000

  70. 70.

    R. Akashi, R. Arita, Phys. Rev. Lett. 111, 057006 (2013)

    ADS  Article  Google Scholar 

  71. 71.

    R. Akashi, R. Arita, J. Phys. Soc. Jpn. 83, 061016 (2014)

    ADS  Article  Google Scholar 

  72. 72.

    J.A. Flores-Livas, A. Sanna, Phys. Rev. B 91, 054508 (2015)

    ADS  Article  Google Scholar 

  73. 73.

    S. Massidda, F. Bernardini, C. Bersier, A. Continenza, P. Cudazzo, A. Floris, H. Glawe, M. Monni, S. Pittalis, G. Profeta, A. Sanna, S. Sharma, E.K.U. Gross, Supercond. Sci. Technol. 22, 034006 (2009)

    ADS  Article  Google Scholar 

  74. 74.

    R. Arita, T. Koretsune, S. Sakai, R. Akashi, Y. Nomura, W. Sano, Adv. Mater. 29, 1602421 (2017)

    Article  Google Scholar 

  75. 75.

    F. Essenberger, A. Sanna, A. Linscheid, F. Tandetzky, G. Profeta, P. Cudazzo, E.K.U. Gross, Phys. Rev. B 90, 214504 (2014)

    ADS  Article  Google Scholar 

  76. 76.

    F. Essenberger, A. Sanna, P. Buczek, A. Ernst, L. Sandratskii, E.K.U. Gross, Phys. Rev. B 94, 014503 (2016)

    ADS  Article  Google Scholar 

  77. 77.

    F. Cataldo, S. Iglesias-Groth, Fulleranes The Hydrogenated Fullerenes (Springer, Netherlands, Dordrecht, 2010)

  78. 78.

    J.M. An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001)

    ADS  Article  Google Scholar 

  79. 79.

    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 81, 134505 (2010)

    ADS  Article  Google Scholar 

  80. 80.

    P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, E.K.U. Gross, Phys. Rev. B 81, 134506 (2010)

    ADS  Article  Google Scholar 

  81. 81.

    J.A. Flores-Livas, M. Amsler, C. Heil, A. Sanna, L. Boeri, G. Profeta, C. Wolverton, S. Goedecker, E.K.U. Gross, Phys. Rev. B 93, 020508 (2016)

    ADS  Article  Google Scholar 

  82. 82.

    B. Renker, K.-P. Bohnen, R. Heid, Phys. Rev. Lett. 86, 5771 (2001)

    ADS  Article  Google Scholar 

  83. 83.

    A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001)

    ADS  Article  Google Scholar 

  84. 84.

    A.B. Migdal, Sov. Phys. JETP 7, 996 (1958)

    Google Scholar 

  85. 85.

    G.J. Kabo, L.S. Karpushenkava, Y.U. Paulechka, in Thermodynamic Properties of Fullerene Hydrides C60 H2n and Equilibria of Their Reactions (Springer, Netherlands, Dordrecht, 2010), pp. 55–83

  86. 86.

    A.V. Bazhenov, I.O. Bashkin, K.P. Meletov, in High-Pressure Hydrogenated Carbon Nanostructures (Springer, Netherlands, Dordrecht, 2010), pp. 225–250

  87. 87.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  88. 88.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  89. 89.

    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    ADS  Article  Google Scholar 

  90. 90.

    M. Fuchs, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999)

    ADS  Article  Google Scholar 

  91. 91.

    S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987)

    ADS  Article  Google Scholar 

  92. 92.

    P. Morel, P.W. Anderson, Phys. Rev. 125, 1263 (1962)

    ADS  Article  Google Scholar 

  93. 93.

    D.J. Scalapino, J.R. Schrieffer, J.W. Wilkins, Phys. Rev. 148, 263 (1966)

    ADS  Article  Google Scholar 

  94. 94.

    X.D. Wen, T. Yang, R. Hoffmann, N.W. Ashcroft, R.L. Martin, S.P. Rudin, J.X. Zhu, ACS Nano 6, 7142 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Sanna.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanna, A., Davydov, A., Dewhurst, J.K. et al. Superconductivity in hydrogenated carbon nanostructures. Eur. Phys. J. B 91, 177 (2018). https://doi.org/10.1140/epjb/e2018-90168-7

Download citation