CT-MQC – a coupled-trajectory mixed quantum/classical method including nonadiabatic quantum coherence effects

Abstract

Upon photoexcitation by a short light pulse, molecules can reach regions of the configuration space characterized by strong nonadiabaticity, where the motion of the nuclei is strongly coupled to the motion of the electrons. The subtle interplay between the nuclear and electronic degrees of freedom in such situations is rather challenging to capture by state-of-the-art nonadiabatic dynamics approaches, limiting therefore their predictive power. The Exact Factorization of the molecular wavefunction, though, offers new perspectives in the solution of this longstanding issue. Here, we investigate the performance of a mixed quantum/classical (MQC) limit of this theory, named Coupled Trajectory-MQC, which was shown to reproduce the excited-state dynamics of small systems accurately. The method is applied to the study of the photoinduced ring opening of oxirane and the results are compared with two other nonadiabatic approaches based on different Ansätze for the molecular wavefunction, namely Ehrenfest dynamics and Ab Initio Multiple Spawning (AIMS). All simulations were performed using linear-response time-dependent density functional theory. We show that the CT-MQC method can capture the (de)coherence effects resulting from the dynamics through conical intersections, in good agreement with the results obtained with AIMS and in contrast with ensemble Ehrenfest dynamics.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Kapral, G. Ciccotti, J. Chem. Phys. 110, 8916 (1999)

    ADS  Article  Google Scholar 

  2. 2.

    F. Agostini, S. Caprara, G. Ciccotti, Europhys. Lett. 78, 30001 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    T. Yonehara, K. Hanasaki, K. Takatsuka, Chem. Rev. 112, 499 (2012)

    Article  Google Scholar 

  4. 4.

    J.C. Tully, J. Chem. Phys. 137, 22A301 (2012)

    Article  Google Scholar 

  5. 5.

    M. Vacher, M.J. Bearpark, M.A. Robb, J.P. Malhado, Phys. Rev. Lett. 118, 083001 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    M. Born, R.J. Oppenheimer, Ann. Phys. 389, 457 (1927)

    Article  Google Scholar 

  7. 7.

    C. Xie, C.L. Malbon, D.R. Yarkony, D. Xie, H. Guo, J. Am. Chem. Soc. 140, 1986 (2018)

    Article  Google Scholar 

  8. 8.

    A. Scherrer, F. Agostini, D. Sebastiani, E.K.U. Gross, R. Vuilleumier, Phys. Rev. X 7, 031035 (2017)

    Google Scholar 

  9. 9.

    A. Schild, F. Agostini, E.K.U. Gross, J. Phys. Chem. A 120, 3316 (2016)

    Article  Google Scholar 

  10. 10.

    A. Scherrer, F. Agostini, D. Sebastiani, E.K.U. Gross, R. Vuilleumier, J. Chem. Phys. 143, 074106 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    L. Wang, A. Akimov, O.V. Prezhdo, J. Phys. Chem. Lett. 7, 2100 (2016)

    Article  Google Scholar 

  12. 12.

    B.F.E. Curchod, U. Rothlisberger, I. Tavernelli, ChemPhysChem 14, 1314 (2013)

    Article  Google Scholar 

  13. 13.

    I. Tavernelli, Acc. Chem. Res. 48, 792 (2015)

    Article  Google Scholar 

  14. 14.

    J.E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, N. Bellonzi, Ann. Rev. Phys. Chem. 67, 387 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    J.C. Tully, J. Chem. Phys. 93, 1061 (1990)

    ADS  Article  Google Scholar 

  16. 16.

    J.C. Tully, Faraday Discuss. 110, 407 (1998)

    ADS  Article  Google Scholar 

  17. 17.

    J.C. Tully, Faraday Discuss. 110, 407 (1998)

    ADS  Article  Google Scholar 

  18. 18.

    F. Agostini, S.K. Min, A. Abedi, E.K.U. Gross, J. Chem. Theory Comput. 12, 2127 (2016)

    Article  Google Scholar 

  19. 19.

    M. Ben-Nun, J. Quenneville, T.J. Martínez, J. Phys. Chem. A 104, 5161 (2000)

    Article  Google Scholar 

  20. 20.

    E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    B.F.E. Curchod, T.J. Penfold, U. Rothlisberger, I. Tavernelli, Phys. Rev. A 84, 042507 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    A. Abedi, F. Agostini, E.K.U. Gross, Europhys. Lett. 106, 33001 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    F. Agostini, A. Abedi, E.K.U. Gross, J. Chem. Phys. 141, 214101 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    N.L. Doltsinis, D. Marx, Phys. Rev. Lett. 88, 166402 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    A.W. Jasper, S. Nangia, C. Zhu, D.G. Truhlar, Acc. Chem. Res. 39, 101 (2006)

    Article  Google Scholar 

  26. 26.

    B.F.E. Curchod, I. Tavernelli, U. Rothlisberger, Phys. Chem. Chem. Phys. 13, 3231 (2011)

    Article  Google Scholar 

  27. 27.

    P. Huo, D.F. Coker, J. Chem. Phys. 137, 22A535 (2012)

    Article  Google Scholar 

  28. 28.

    R. Mitrić, J. Petersen, V. Bonačić-Koutecký, Phys. Rev. A 79, 053416 (2009)

    ADS  Article  Google Scholar 

  29. 29.

    M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theory Comput. 7, 1253 (2011)

    Article  Google Scholar 

  30. 30.

    R. Kapral, Annu. Rev. Phys. Chem. 57, 129 (2006)

    ADS  Article  Google Scholar 

  31. 31.

    E.R. Dunkel, S. Bonella, D.F. Coker, J. Chem. Phys. 129, 114106 (2008)

    ADS  Article  Google Scholar 

  32. 32.

    T.J. Martínez, M. Ben-Nun, R.D. Levine, J. Phys. Chem. 100, 7884 (1996)

    Article  Google Scholar 

  33. 33.

    T.J. Martínez, R.D. Levine, J. Chem. Soc. Faraday Trans. 93, 941 (1997)

    Article  Google Scholar 

  34. 34.

    M. Ben-Nun, T.J. Martínez, J. Chem. Phys. 108, 7244 (1998)

    ADS  Article  Google Scholar 

  35. 35.

    M.D. Hack, A.M. Wensmann, D.G. Truhlar, M. Ben-Nun, T.J. Martínez, J. Chem. Phys. 115, 1172 (2001)

    ADS  Article  Google Scholar 

  36. 36.

    M. Ben-Nun, T.J. Martínez, Adv. Chem. Phys. 121, 439 (2002)

    Google Scholar 

  37. 37.

    B.F.E. Curchod, C. Rauer, P. Marquetand, L. González, T. Martínez, J. Chem. Phys. 144, 101102 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    A.M. Virshup, C. Punwong, T.V. Pogorelov, B.A. Lindquist, C. Ko, T.J. Martínez, J. Phys. Chem. B 113, 3280 (2008)

    Article  Google Scholar 

  39. 39.

    F.F. de Carvalho, M.E.F. Bouduban, B.F.E. Curchod, I. Tavernelli, Entropy 16, 62 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  40. 40.

    A. Abedi, F. Agostini, Y. Suzuki, E.K.U. Gross, Phys. Rev. Lett. 110, 263001 (2013)

    ADS  Article  Google Scholar 

  41. 41.

    F. Agostini, A. Abedi, Y. Suzuki, E.K.U. Gross, Mol. Phys. 111, 3625 (2013)

    ADS  Article  Google Scholar 

  42. 42.

    F. Agostini, A. Abedi, Y. Suzuki, S.K. Min, N.T. Maitra, E.K.U. Gross, J. Chem. Phys. 142, 084303 (2015)

    ADS  Article  Google Scholar 

  43. 43.

    A. Abedi, N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)

    ADS  Article  Google Scholar 

  44. 44.

    A. Abedi, N.T. Maitra, E.K.U. Gross, J. Chem. Phys. 137, 22A530 (2012)

    Article  Google Scholar 

  45. 45.

    S.K. Min, F. Agostini, E.K.U. Gross, Phys. Rev. Lett. 115, 073001 (2015)

    ADS  Article  Google Scholar 

  46. 46.

    S.K. Min, F. Agostini, I. Tavernelli, E.K.U. Gross, J. Phys. Chem. Lett. 8, 3048 (2017)

    Article  Google Scholar 

  47. 47.

    G. Granucci, M. Persico, J. Chem. Phys. 126, 134114 (2007)

    ADS  Article  Google Scholar 

  48. 48.

    A.W. Jasper, S. Nangia, C. Zhu, D.G. Truhlar, Acc. Chem. Res. 39, 101 (2006)

    Article  Google Scholar 

  49. 49.

    H.M. Jaeger, S. Fischer, O.V. Prezhdo, J. Chem. Phys. 137, 22A545 (2012)

    Article  Google Scholar 

  50. 50.

    J.E. Subotnik, W. Ouyang, B.R. Landry, J. Chem. Phys. 139, 214107 (2013)

    ADS  Article  Google Scholar 

  51. 51.

    X. Gao, W. Thiel, Phys. Rev. E 95, 013308 (2017)

    ADS  Article  Google Scholar 

  52. 52.

    B.J. Schwartz, E.R. Bittner, O.V. Prezhdo, P.J. Rossky, J. Chem. Phys. 104, 5942 (1996)

    ADS  Article  Google Scholar 

  53. 53.

    J.Y. Fang, S. Hammes-Schiffer, J. Phys. Chem. A 103, 9399 (1999)

    Article  Google Scholar 

  54. 54.

    N. Shenvi, J.E. Subotnik, W. Yang, J. Chem. Phys. 134, 144102 (2011)

    ADS  Article  Google Scholar 

  55. 55.

    N. Shenvi, J.E. Subotnik, W. Yang, J. Chem. Phys. 135, 024101 (2011)

    ADS  Article  Google Scholar 

  56. 56.

    N. Shenvi, W. Yang, J. Chem. Phys. 137, 22A528 (2012)

    Article  Google Scholar 

  57. 57.

    J.E. Subotnik, N. Shenvi, J. Chem. Phys. 134, 024105 (2011)

    ADS  Article  Google Scholar 

  58. 58.

    J.E. Subotnik, N. Shenvi, J. Chem. Phys. 134, 244114 (2011)

    ADS  Article  Google Scholar 

  59. 59.

    I. Tavernelli, Phys. Rev. B 73, 094204 (2006)

    ADS  Article  Google Scholar 

  60. 60.

    J.L. Alonso, J. Clemente-Gallardo, P. Echeniche-Robba, J.A. Jover-Galtier, J. Chem. Phys. 139, 087101 (2013)

    ADS  Article  Google Scholar 

  61. 61.

    A. Abedi, N.T. Maitra, E.K.U. Gross, J. Chem. Phys. 139, 087102 (2013)

    ADS  Article  Google Scholar 

  62. 62.

    F. Agostini, S.K. Min, E.K.U. Gross, Ann. Phys. 527, 546 (2015)

    MathSciNet  Article  Google Scholar 

  63. 63.

    F.G. Eich, F. Agostini, J. Chem. Phys. 145, 054110 (2016)

    ADS  Article  Google Scholar 

  64. 64.

    B.F.E. Curchod, F. Agostini, E.K.U. Gross, J. Chem. Phys. 145, 034103 (2016)

    ADS  Article  Google Scholar 

  65. 65.

    B.F.E. Curchod, F. Agostini, J. Phys. Chem. Lett. 8, 831 (2017)

    Article  Google Scholar 

  66. 66.

    E. Khosravi, A. Abedi, A. Rubio, N.T. Maitra, Phys. Chem. Chem. Phys. 19, 8269 (2017)

    Article  Google Scholar 

  67. 67.

    Y. Suzuki, K. Watanabe, Phys. Rev. A 94, 032517 (2016)

    ADS  Article  Google Scholar 

  68. 68.

    Y. Suzuki, A. Abedi, N.T. Maitra, K. Yamashita, E.K.U. Gross, Phys. Rev. A 89, 040501(R) (2014)

    ADS  Article  Google Scholar 

  69. 69.

    E. Khosravi, A. Abedi, N.T. Maitra, Phys. Rev. Lett. 115, 263002 (2015)

    ADS  Article  Google Scholar 

  70. 70.

    S.K. Min, A. Abedi, K.S. Kim, E.K.U. Gross, Phys. Rev. Lett. 113, 263004 (2014)

    ADS  Article  Google Scholar 

  71. 71.

    R. Requist, F. Tandetzky, E.K.U. Gross, Phys. Rev. A 93, 042108 (2016)

    ADS  Article  Google Scholar 

  72. 72.

    P.R. Holland, The quantum theory of motion – an account of the de Broglie–Bohm causal interpretation of quantum mechanics (Cambridge University Press, Cambridge, UK, 1993)

  73. 73.

    B.F.E. Curchod, T.J. Martínez, Chem. Rev. 118, 3305 (2018)

    Article  Google Scholar 

  74. 74.

    E.J. Heller, J. Chem. Phys. 75, 2923 (1981)

    ADS  MathSciNet  Article  Google Scholar 

  75. 75.

    S. Yang, J.D. Coe, B. Kaduk, T.J. Martínez, J. Chem. Phys. 130, 04B606 (2009)

    Google Scholar 

  76. 76.

    B. Mignolet, B.F.E. Curchod, arXiv:1801.06639 (2018)

  77. 77.

    B.G. Levine, J.D. Coe, A.M. Virshup, T.J. Martinez, Chem. Phys. 347, 3 (2008)

    ADS  Article  Google Scholar 

  78. 78.

    J.W. Snyder Jr., B.F.E. Curchod, T.J. Martínez, J. Phys. Chem. Lett. 7, 2444 (2016)

    Article  Google Scholar 

  79. 79.

    H. Tao, B.G. Levine, T.J. Martínez, J. Chem. Phys. A 113, 13656 (2009)

    Article  Google Scholar 

  80. 80.

    S. Pijeau, D. Foster, E.G. Hohenstein, J. Phys. Chem. A 121, 4595 (2017)

    Article  Google Scholar 

  81. 81.

    B.F.E. Curchod, A. Sisto, T.J. Martínez, J. Phys. Chem. A 121, 265 (2017)

    Article  Google Scholar 

  82. 82.

    CPMD, Copyright IBM Corp 1990–2015, Copyright MPI für Festkörperforschung Stuttgart 1997–2001. http://www.cpmd.org/

  83. 83.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  84. 84.

    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Article  Google Scholar 

  85. 85.

    M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996)

    ADS  Article  Google Scholar 

  86. 86.

    M.E. Casida, Time-dependent density-functional response theory for molecules, in Recent advances in density functional methods, edited by D.P. Chong (World Scientific, Singapore, 1995), p. 155

  87. 87.

    I. Tamm, J. Phys. 9, 449 (1945)

    Google Scholar 

  88. 88.

    S.M. Dancoff, Phys. Rev. 78, 382 (1950)

    ADS  Article  Google Scholar 

  89. 89.

    C.A. Ullrich, Time-dependent density-functional theory (Oxford University Press, 2012)

  90. 90.

    B.G. Levine, C. Ko, J. Quenneville, T.J. Martinez, Mol. Phys. 104, 1039 (2006)

    ADS  Article  Google Scholar 

  91. 91.

    E. Tapavicza, I. Tavernelli, U. Rothlisberger, C. Filippi, M.E. Casida, J. Chem. Phys. 129, 124108 (2008)

    ADS  Article  Google Scholar 

  92. 92.

    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    ADS  Article  Google Scholar 

  93. 93.

    C.M. Isborn, N. Luehr, I.S. Ufimtsev, T.J. Martínez, J. Chem. Theory Comput. 7, 1814 (2011)

    Article  Google Scholar 

  94. 94.

    I.S. Ufimtsev, T.J. Martinez, J. Chem. Theory Comput. 4, 222 (2008)

    Article  Google Scholar 

  95. 95.

    I.S. Ufimtsev, T.J. Martinez, J. Chem. Theory Comput. 5, 1004 (2009)

    Article  Google Scholar 

  96. 96.

    I.S. Ufimtsev, T.J. Martinez, J. Chem. Theory Comput. 5, 2619 (2009)

    Article  Google Scholar 

  97. 97.

    R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724 (1971)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivano Tavernelli.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Curchod, B.F.E., Agostini, F. & Tavernelli, I. CT-MQC – a coupled-trajectory mixed quantum/classical method including nonadiabatic quantum coherence effects. Eur. Phys. J. B 91, 168 (2018). https://doi.org/10.1140/epjb/e2018-90149-x

Download citation