Skip to main content
Log in

On the challenge to improve the density response with unusual gradient approximations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Certain excitations, especially ones of long-range charge transfer character, are poorly described by time-dependent density functional theory (TDDFT) when typical (semi-)local functionals are used. A proper description of these excitations would require an exchange–correlation response differing substantially from the usual (semi-)local one. It has recently been shown that functionals of the generalized gradient approximation (GGA) type can yield unusual potentials, mimicking features of the exact exchange derivative discontinuity and showing divergences on orbital nodal surfaces. We here investigate whether these unusual potential properties translate into beneficial response properties. Using the Sternheimer formalism we closely investigate the response obtained with the 2013 exchange approximation by Armiento and Kümmel (AK13) and the 1988 exchange approximation by Becke (B88), both of which show divergences on orbital nodal planes. Numerical calculations for Na2 as well as analytical and numerical calculations for the hydrogen atom show that the response of AK13 behaves qualitatively different from usual semi-local functionals. However, the AK13 functional leads to fundamental instabilities in the asymptotic region that prevent its practical application in TDDFT. Our findings may help the development of future improved functionals. They also corroborate that the frequency-dependent Sternheimer formalism is excellently suited for running and analyzing TDDFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  3. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  4. E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 55, 2850 (1985)

    Article  ADS  Google Scholar 

  5. M. Petersilka, U.J. Gossman, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996)

    Article  ADS  Google Scholar 

  6. M. Lein, E.K.U. Gross, J.P. Perdew, Phys. Rev. B 61, 13431 (2000)

    Article  ADS  Google Scholar 

  7. T. Grabo, T. Kreibich, S. Kurth, E.K.U. Gross, in Strong Coulomb Correlation in Electronic Structure: Beyond the Local Density Approximation, edited by V. Anisimov (Gordon & Breach, Tokyo, 2000), pp. 203–311

  8. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  9. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  ADS  Google Scholar 

  10. A. Dreuw, M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004)

    Article  Google Scholar 

  11. D. Tozer, J. Chem. Phys. 119, 12697 (2003)

    Article  ADS  Google Scholar 

  12. N. Maitra, J. Chem. Phys. 122, 234104 (2005)

    Article  ADS  Google Scholar 

  13. S. Kümmel, Adv. Energy Mater. 7, 1700440 (2017)

    Article  Google Scholar 

  14. J.D. Gledhill, D. Tozer, J. Chem. Phys. 143, 024104 (2015)

    Article  ADS  Google Scholar 

  15. A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101 (2006)

    Article  ADS  Google Scholar 

  16. A.P. Gaiduk, V.N. Staroverov, J. Chem. Phys. 128, 204101 (2008)

    Article  ADS  Google Scholar 

  17. V.N. Staroverov, J. Chem. Phys. 129, 134103 (2008)

    Article  ADS  Google Scholar 

  18. R. Armiento, S. Kümmel, T. Körzdörfer, Phys. Rev. B 77, 165106 (2008)

    Article  ADS  Google Scholar 

  19. A. Karolewski, R. Armiento, S. Kümmel, J. Chem. Theory Comput. 5, 712 (2009)

    Article  Google Scholar 

  20. E. Räsänen, S. Pittalis, C.R. Proetto, J. Chem. Phys. 132, 044112 (2010)

    Article  ADS  Google Scholar 

  21. D. Koller, F. Tran, P. Blaha, Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  22. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  23. F. Tran, P. Blaha, K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007)

    ADS  Google Scholar 

  24. F. Tran, P. Blaha, M. Betzinger, S. Blügel, Phys. Rev. B 91, 165121 (2015)

    Article  ADS  Google Scholar 

  25. R. Armiento, S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013)

    Article  ADS  Google Scholar 

  26. T.F.T. Cerqueira, M.J.T. Oliveira, M.A.L. Marques, J. Chem. Theory Comput. 10, 5625 (2014)

    Article  Google Scholar 

  27. A. Karolewski, R. Armiento, S. Kümmel, Phys. Rev. A 88, 052519 (2013)

    Article  ADS  Google Scholar 

  28. A.P. Gaiduk, S.K. Chulkov, V.N. Staroverov, J. Chem. Theory Comput. 5, 699 (2009)

    Article  Google Scholar 

  29. M. Mundt, S. Kümmel, R. van Leeuwen, P.-G. Reinhard, Phys. Rev. A 75, 050501(R) (2007)

    Article  ADS  Google Scholar 

  30. T. Körzdörfer, S. Kümmel, Phys. Rev. B 82, 155206 (2010)

    Article  Google Scholar 

  31. A.R. Williams, U. von Barth, in Theory of the inhomogeneous electron gas, edited by S. Lundqvist, N.H. March (Springer Science + Business Media, LLC, New York, 1983), p. 200

  32. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  33. M.E. Casida, in Recent Developments and Applications in Density-Functional Theory, edited by J.M. Seminario (Elsevier Science, Amsterdam, 1996), pp. 391–439

  34. E.K.U. Gross, K. Burke, in Time-dependent Density Functional Theory, edited by M. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. Gross, (Springer, Berlin, 2006), p. 10

  35. C. Filippi, C.J. Umrigar, X. Gonze, J. Chem. Phys. 107, 9994 (1997)

    Article  ADS  Google Scholar 

  36. R. van Meer, O. Gritsenko, E.J. Baerends, J. Chem. Theory Comput. 10, 4432 (2014)

    Article  Google Scholar 

  37. F. Hofmann, I. Schelter, S. Kümmel, J. Chem. Phys. (submitted)

  38. J.B. Krieger, Y. Li, G.J. Iafrate, Phys. Rev. A 46, 5453 (1992)

    Article  ADS  Google Scholar 

  39. M. Mundt, S. Kümmel, Phys. Rev. Lett. 95, 203004 (2005)

    Article  ADS  Google Scholar 

  40. M. Hellgren, E.K.U. Gross, Phys. Rev. A 85, 022514 (2012)

    Article  ADS  Google Scholar 

  41. M. Lein, S. Kümmel, Phys. Rev. Lett. 94, 143003 (2005)

    Article  ADS  Google Scholar 

  42. M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)

    Article  ADS  Google Scholar 

  43. J.I. Fuks, N.T. Maitra, Phys. Rev. A 89, 062502 (2014)

    Article  ADS  Google Scholar 

  44. N. Maitra, J. Chem. Phys. 144, 220901 (2016)

    Article  ADS  Google Scholar 

  45. M. Thiele, S. Kümmel, Phys. Rev. Lett. 112, 083001 (2014)

    Article  ADS  Google Scholar 

  46. T. Stein, L. Kronik, R. Baer, J. Am. Chem. Soc. 131, 2818 (2009)

    Article  Google Scholar 

  47. A. Karolewski, A. Neubig, M. Thelakkat, S. Kümmel, Phys. Chem. Chem. Phys. 15, 20016 (2013)

    Article  Google Scholar 

  48. T. Körzdörfer, J.-L. Bredas, Acc. Chem. Res. 47, 3284 (2014)

    Article  Google Scholar 

  49. Y. Li, C.A. Ullrich, J. Chem. Theory Comput. 11, 5838 (2015)

    Article  Google Scholar 

  50. Y. Li, C.A. Ullrich, J. Chem. Phys. 145, 164107 (2016)

    Article  ADS  Google Scholar 

  51. Y. Li, M. Dhanashree, S. Patil, S. Guha, C.A. Ullrich, Mol. Phys. 114, 1365 (2016)

    Article  ADS  Google Scholar 

  52. V. Vlček, G. Steinle-Neumann, L. Leppert, R. Armiento, S. Kümmel, Phys. Rev. B 91, 035107 (2015)

    Article  ADS  Google Scholar 

  53. F. Tran, P. Blaha, M. Betzinger, S. Blügel, Phys. Rev. B 94, 165149 (2016)

    Article  ADS  Google Scholar 

  54. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 95, 245118 (2017)

    Article  ADS  Google Scholar 

  55. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B 96, 075140 (2017)

    Article  ADS  Google Scholar 

  56. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  57. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49, 2421 (1994)

    Article  ADS  Google Scholar 

  58. A. Lembarki, F. Rogemond, H. Chermette, Phys. Rev. A 52, 3704 (1995)

    Article  ADS  Google Scholar 

  59. X. Andrade, S. Botti, M.A.L. Marques, A. Rubio, J. Chem. Phys. 126, 184106 (2007)

    Article  ADS  Google Scholar 

  60. J.P. Perdew, W. Yue, Phys. Rev. B 33, 8800 (1986)

    Article  ADS  Google Scholar 

  61. P.J. Stephens, J.F. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  62. A. Lindmaa, R. Armiento, Phys. Rev. B 94, 155143 (2016)

    Article  ADS  Google Scholar 

  63. X. Andrade, D. Strubbe, U.D. Giovannini, A.H. Larsen, M.J.T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M.J. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M.A.L. Marques, A. Rubio, Phys. Chem. Chem. Phys. 17, 31371 (2015)

    Article  Google Scholar 

  64. K. Lopata, N. Govind, J. Chem. Theory Comput. 7, 1344 (2011)

    Article  Google Scholar 

  65. M.R. Provorse, C.M. Isborn, Int. J. Quant. Chem. 116, 739 (2016)

    Article  Google Scholar 

  66. I. Schelter, S. Kümmel, J. Chem. Theory Comput. 14, 1910 (2018)

    Article  Google Scholar 

  67. P.-G. Reinhard, M. Brack, F. Calvayrac, C. Kohl, S. Kümmel, E. Suraud, C.A. Ullrich, Eur. Phys. J. D 9, 111 (1999)

    Article  ADS  Google Scholar 

  68. M. Moseler, B. Huber, H. Häkkinen, U. Landman, G. Wrigge, M.A. Hoffmann, B.V. Issendorff, Phys. Rev. B 68, 165413 (2003)

    Article  ADS  Google Scholar 

  69. D. Hofmann, S. Kümmel, J. Chem. Phys. 137, 064117 (2012)

    Article  ADS  Google Scholar 

  70. S. Kümmel, K. Andrae, P.-G. Reinhard, Appl. Phys. B 73, 293 (2001)

    Article  ADS  Google Scholar 

  71. A. Rubio, J.A. Alonso, X. Blase, L. Balbas, S.G. Louie, Phys. Rev. Lett. 77, 247 (1996)

    Article  ADS  Google Scholar 

  72. M.A.L. Marques, A. Castro, A. Rubio, J. Chem. Phys. 115, 3006 (2001)

    Article  ADS  Google Scholar 

  73. I. Vasiliev, S. Öğüt, J.R. Chelikowsky, Phys. Rev. Lett. 82, 1919 (1999)

    Article  ADS  Google Scholar 

  74. I. Vasiliev, S. Öğüt, J.R. Chelikowsky, Phys. Rev. B 65, 115416 (2002)

    Article  ADS  Google Scholar 

  75. S. Kümmel, M. Brack, Phys. Rev. A 64, 022506 (2001)

    Article  ADS  Google Scholar 

  76. M. Mundt, S. Kümmel, Phys. Rev. B 76, 035413 (2007)

    Article  ADS  Google Scholar 

  77. L. Kronik, A. Makmal, M.L. Tiago, M.M.G. Alemany, M. Jain, X. Huang, Y. Saad, J.R. Chelikowsky, Phys. Status Solidi B 243, 1063 (2006)

    Article  ADS  Google Scholar 

  78. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  79. C. Fiolhas, F. Nogueira, M.A.L. Marques, in A Primer in Density Functional Theory, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2003), Vol. 620

  80. V.U. Nazarov, G. Vignale, Phys. Rev. Lett. 107, 216402 (2011)

    Article  ADS  Google Scholar 

  81. C. Cohen-Tannoudji, B. Diu, F. Laloë, in Quantenmechanik (de Gruyter, Berlin, 2009), Vols. 1 and 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kümmel.

Additional information

Contribution to the Topical Issue “Special Issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhammer, J., Hofmann, F., Armiento, R. et al. On the challenge to improve the density response with unusual gradient approximations. Eur. Phys. J. B 91, 159 (2018). https://doi.org/10.1140/epjb/e2018-90119-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90119-4

Navigation