Skip to main content

Second generation Car-Parrinello MD: application to the h-BN/Rh(111) nanomesh

Abstract

Hexagonal boron nitride sp2 layers grown and supported on the Rh(111) metal surface attracted quite some interest thanks to the structural and electronic peculiarities of this quasi-2D system. The honeycomb regular corrugation is the key feature at the origin of several properties and applications in nanotechnology, e.g., the selective adsorption and functionalisation related to the modulation of the electronic structure. Atomistic simulations play an important role, since they can shed light on the nature of such a complex interface, providing resolution of details that cannot be achieved experimentally. However, the studies by electronic structure calculations have been mostly limited to static models of the optimized system. The sampling of configurations at finite temperature by ab-initio molecular dynamics requires significantly larger computational effort, and can become unfeasible for large scale and metallic models, as it is the case of h-BN/Rh(111). In this work, we employ a recently developed Car-Parrinello-like approach to overcome the performance limitations of the standard Born-Oppenheimer molecular dynamics scheme, thus obtaining a speed-up of 17×. We report on the set-up and the application of this approach to simulate the h-BN/Rh(111) interface at different temperatures and discuss the thermal stability of the corrugated pattern.

This is a preview of subscription content, access via your institution.

References

  1. H. Dil, J. Lobo-Checa, R. Laskowski, P. Blaha, S. Berner, J. Osterwalder, T. Greber, Science 319, 1824 (2008)

    Article  ADS  Google Scholar 

  2. T. Brugger, S. Günther, B. Wang, J. Hugo Dil, M.-L. Bocquet, J. Osterwalder, J. Wintterlin, T. Greber, Phys. Rev. B 79, 045407 (2009)

    Article  ADS  Google Scholar 

  3. A. Goriachko, H. Marcus Knapp, H. Over, M. Corso, T. Brugger, S. Berner, J. Osterwalder, T. Greber, Langmuir 23, 2928 (2007)

    Article  Google Scholar 

  4. J. Gómez Díaz, Y. Ding, R. Koitz, A.P. Seitsonen, M. Iannuzzi, J. Hutter, Theor. Chem. ACC. 132, 1350 (2013)

    Article  Google Scholar 

  5. M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, J. Osterwalder, Science 303, 217 (2004)

    Article  ADS  Google Scholar 

  6. S. Berner, M. Corso, R. Widmer, O. Groening, R. Laskowski, P. Blaha, K. Schwarz, A. Goriachko, H. Over, S. Gsell, M. Schreck, H. Sachdev, T. Greber, J. Osterwalder, Angew. Chem. Int. Ed. 46, 5115 (2007)

    Article  Google Scholar 

  7. T. Dienel, J. Gomez-Diaz, A.P. Seitsonen, R. Widmer, M. Iannuzzi, K. Radican, H. Sachdev, K. Müllen, J. Hutter, O. Gröning, ACS Nano 8, 6571 (2014)

    Article  Google Scholar 

  8. R. Widmer, S. Berner, O. Gröning, T. Brugger, J. Osterwalder, T. Greber, Electrochem. Commun. 9, 2484 (2007)

    Article  Google Scholar 

  9. H. Cun, M. Iannuzzi, A. Hemmi, S. Roth, J. Osterwalder, T. Greber, Nano Lett. 13, 2098 (2013)

    Article  ADS  Google Scholar 

  10. H.o Cun, M. Iannuzzi, A. Hemmi, J. Osterwalder, T. Greber, ACS Nano 8, 7423 (2014)

    Article  Google Scholar 

  11. T. Brugger, H. Ma, M. Iannuzzi, S. Berner, A. Winkler, J. Hutter, J. Osterwalder, T. Greber, Angew. Chem. Int. Ed. 49, 6120 (2010)

    Article  Google Scholar 

  12. D. Golze, J. Hutter, M. Iannuzzi, Phys. Chem. Chem. Phys. 17, 14307 (2015)

    Article  Google Scholar 

  13. S. Mertens, A. Hemmi, S. Muff, O. Gröning, S. Feyter, J. Osterwalder, T. Greber, Nature 534, 676 (2016)

    Article  ADS  Google Scholar 

  14. H. Wang, Y. Zhao, Y. Xie, X. Ma, X. Zhang, J. Semicond. 38, 031003 (2017)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  16. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  17. S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

    Article  ADS  Google Scholar 

  18. J. VandeVondele, J. Hutter, J. Chem. Phys. 127, 114105 (2007)

    Article  ADS  Google Scholar 

  19. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 167, 103 (2005)

    Article  ADS  Google Scholar 

  20. T.D. Kühne, M. Krack, F.R. Mohamed, M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)

    Article  ADS  Google Scholar 

  21. T.D. Kühne, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 391 (2014)

    Article  Google Scholar 

  22. J. Dai, J. Yuan, EPL 88, 20001 (2009)

    Article  ADS  Google Scholar 

  23. J. Hutter, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 604 (2012)

    Article  Google Scholar 

  24. J.Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15 (2014)

    Article  Google Scholar 

  25. T.D. Kühne, M. Krack, M. Parrinello, J. Chem. Theory Comput. 5, 235 (2009)

    Article  Google Scholar 

  26. T.D. Kühne, T.A. Pascal, E. Kaxiras, Y. Jung, J. Phys. Chem. Lett. 2, 105 (2011)

    Article  Google Scholar 

  27. J. Kolafa, J. Comput. Chem. 25, 335 (2004)

    Article  Google Scholar 

  28. J. VandeVondele, J. Hutter, J. Chem. Phys. 118, 4365 (2003)

    Article  ADS  Google Scholar 

  29. J. Albers, J.M. Deutch, I. Oppenheim, J. Chem. Phys. 54, 3541 (1971)

    Article  ADS  Google Scholar 

  30. P. Gasparotto, M. Ceriotti, J. Chem. Phys. 141, 174110 (2014)

    Article  ADS  Google Scholar 

  31. W.H. Press, Numerical recipes: the art of scientific computing, 3rd edn. (Cambridge University Press, Cambridge, United Kingdom, 2007)

  32. D. Martoccia, S.A. Pauli, T. Brugger, T. Greber, B.D. Patterson, P.R. Willmott, Surf. Sci. 604, L9 (2010)

    Article  Google Scholar 

  33. G. Dong, E.B. Fourré, F.C. Tabak, J.W.M. Frenken, Phys. Rev. Lett. 104, 096102 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Musso.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Musso, T., Caravati, S., Hutter, J. et al. Second generation Car-Parrinello MD: application to the h-BN/Rh(111) nanomesh. Eur. Phys. J. B 91, 148 (2018). https://doi.org/10.1140/epjb/e2018-90104-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90104-y