Skip to main content
Log in

Geometric symmetry modulated spin polarization of electron transport in graphene-like zigzag FeB2 nanoribbons

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Due to electron deficiency, the graphene-like honeycomb structure of boron is unstable. By introducing Fe atoms, it is reported that FeB2 monolayer has excellent dynamic and thermal stabilities at room temperature. Based on first-principles calculations, the spin-dependent transport of zigzag FeB2 nanoribbons (ZFeB2NRs) under ferromagnetic state (FM) is investigated. It is found that, around the Fermi level, FeB-terminated (or FeFe-terminated) ZFeB2NRs exhibit completely spin-polarized (or spin-unpolarized) transmission, and BB-terminated configurations exhibit completely unpolarized or partially polarized transmission. Further analysis shows that, the hinge dihedral angle has a switching effect on the transport channels, and the spin polarization of the transmission is determined by the symmetry of the distribution of hinge dihedral angles along the transverse direction of the ribbon, where symmetric/asymmetric distribution induces spin-unpolarized/polarized transmission. Moreover, such a symmetry effect is found to be robust to the width of the ribbon, showing great application potential. Our findings may throw light on the development of B-based spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Awschalom, M.E. Flatté, Nat. Phys. 3, 153 (2007)

    Article  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  3. D.C. Worledge, Appl. Phys. Lett. 84, 4559 (2004)

    Article  ADS  Google Scholar 

  4. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  5. Y.D. Guo, X.H. Yan, Y. Xiao, J. Appl. Phys. 113, 244302 (2013)

    Article  ADS  Google Scholar 

  6. Y.D. Guo, X.H. Yan, Y. Xiao, J. Appl. Phys. 108, 104309 (2010)

    Article  ADS  Google Scholar 

  7. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, H.-A. Hiroaki, A. Margarita, H. Douglas, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006)

    Article  Google Scholar 

  8. M.Y Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  9. A.J. Mannix et al., Science 350, 1513 (2015)

    Article  ADS  Google Scholar 

  10. Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Angew. Chem. Int. Ed. 54, 13022 (2015)

    Article  Google Scholar 

  11. H. Zhang, Y. Li, J. Hou, A. Du, Z. Chen, Nano Lett. 16, 6124 (2016)

    Article  ADS  Google Scholar 

  12. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  13. Y. Kobayashi, K.I. Fukui, T. Enoki, K. Kusakabe, Phys. Rev. B 73, 125415 (2006)

    Article  ADS  Google Scholar 

  14. H. Pan, Y.-W. Zhang, J. Mater. Chem. 22, 7280 (2012)

    Article  Google Scholar 

  15. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  16. Y. An, M. Zhang, L. Chen, C. Xia, T.  Wang, Z. Fu, Z. Jiao, G. Xu, RSC Adv. 5, 107136 (2015)

    Article  Google Scholar 

  17. E.-J. Kan, Z. Li, J. Yang, J.G. Hou, J. Am. Chem. Soc. 130, 4224 (2008)

    Article  Google Scholar 

  18. S. Majumdar, R. Laiho, P. Laukkanen, I.J. Väyrynen, H.S. Majumdar, R. Österbacka, Appl. Phys. Lett. 89, 122114 (2006)

    Article  ADS  Google Scholar 

  19. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  20. M. Brandbyge, J. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  21. F.D. Novaes, A.J.R. Silva, A. Fazzio, Braz. J. Phys. 36, 799 (2006)

    Article  ADS  Google Scholar 

  22. S. Datta, Superlattice Microstruct. 28, 253 (2000)

    Article  ADS  Google Scholar 

  23. A.J. Cohen, P. Mori-Sánchez, W. Yang, Science 321, 792 (2008)

    Article  ADS  Google Scholar 

  24. http://www.quantumwise.com/

  25. J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, J.A. Chevary, S.H.  Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  27. T.B. Martins, R.H. Miwa, A.J.R. Da Silva, A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007)

    Article  ADS  Google Scholar 

  28. F. Cervantes-Sodi, G. Csanyi, S. Piscanec, A.C. Ferrari, Phys. Rev. B 77, 165427 (2008)

    Article  ADS  Google Scholar 

  29. K. Sato, H. Katayama-Yoshida, Jpn J. Appl. Phys. 40, L334 (2001)

    Article  ADS  Google Scholar 

  30. S. Okada, A. Oshiyama, Phys. Rev. Lett. 87, 146803 (2001)

    Article  ADS  Google Scholar 

  31. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, 1997)

  32. L. Levitov, D.A. Case, Adv. Inorg. Chem. 38, 423 (1992)

    Article  Google Scholar 

  33. D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 96, 176803 (2006)

    Article  ADS  Google Scholar 

  34. L. Kou, Y. Ma, C. Tang, Z. Sun, A. Du, C. Chen, Nano Lett. 16, 7910 (2016)

    Article  ADS  Google Scholar 

  35. J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, Q.J. Zhang, Sci. Rep. 4, 6452 (2014)

    Article  ADS  Google Scholar 

  36. J. Padilha, R.H. Miwa, A. Fazzio, Phys. Chem. Chem. Phys. 18, 25491 (2016)

    Article  Google Scholar 

  37. M. Bernien et al., Phys. Rev. B 102, 047202 (2009)

    Google Scholar 

  38. L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B 73, 195107 (2006)

    Article  ADS  Google Scholar 

  39. J. Zhou, Q. Sun, J. Am. Chem. Soc. 133, 15113 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Dong Guo or Xiao-Hong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH., Guo, YD., Yan, XH. et al. Geometric symmetry modulated spin polarization of electron transport in graphene-like zigzag FeB2 nanoribbons. Eur. Phys. J. B 91, 154 (2018). https://doi.org/10.1140/epjb/e2018-90094-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90094-8

Keywords

Navigation