Skip to main content
Log in

Ballistic transport in aperiodic Labyrinth tiling proven through a new convolution theorem

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this article, we report a distinct convolution theorem developed for the Kubo-Greenwood formula in Labyrinth tiling by transforming the two-dimensional lattice into a set of independent chains with rescaled Hamiltonians. Such transformation leads to an analytical solution of the direct-current conductance spectra, where quantized steps with height of 2g0 are found in Labyrinth tiling with periodic order along the applied electric field direction, in contrast to the step height of g0 observed in the corresponding square lattices, being g0 the conductance quantum. When this convolution theorem is combined with the real-space renormalization method, we are able to address in non-perturbative way the electronic transport in macroscopic aperiodic Labyrinth tiling based on generalized Fibonacci chains. Furthermore, we analytically demonstrate the existence of ballistic transport states in aperiodic Labyrinth tiling. This finding suggests that the periodicity should not be a necessary condition for the single-electron ballistic transport even in multidimensional fully non-periodic lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.W. Ashcroft, N.D. Mermin, Solid state physics (Harcourt College Publishers, Fort Worth, 1976)

  2. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  3. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

    Article  ADS  Google Scholar 

  4. E. Maciá, ISRN Condens. Matter Phys. 2014, 165943 (2014)

    Article  MathSciNet  Google Scholar 

  5. M. Renner, G. Von Freymann, Sci. Rep. 5, 13129 (2015)

    Article  ADS  Google Scholar 

  6. M. Hollander, B. Solomyak, Ergod. Theory Dyn. Syst. 23, 533 (2003)

    Article  Google Scholar 

  7. J. Kellendonk et al. (Eds.) Mathematics of aperiodic order (Springer, Heidelberg, 2015)

  8. M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Macé, A. Jagannathan, F. Piéchon, Phys. Rev. B 93, 205153 (2016)

    Article  ADS  Google Scholar 

  10. E. Maciá, Aperiodic structures in condensed matter: fundamentals and applications (CRC Press, Boca Raton, 2009)

  11. D. Damanik, A. Gorodetski, W. Yensse, Invent. Math. 206, 629 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. E.L. Albuquerque, M.G. Cottam, Phys. Rep. 376, 225 (2003)

    Article  ADS  Google Scholar 

  13. C. Huang, F. Ye, X. Chen, Y.V. Kartashov, V.V. Konotop, L. Torner, Sci. Rep. 6, 32546 (2016)

    Article  ADS  Google Scholar 

  14. I.F. Herrera-González, J.A. Méndez-Bermúdez, F.M. Izrailev, Phys. Rev. E 90, 042115 (2014)

    Article  ADS  Google Scholar 

  15. G. Trambly de Laissardière, C. Oguey, D. Mayou, J. Phys.: Conf. Ser. 809, 012020 (2017)

    Google Scholar 

  16. Z. Akdeniz, P. Vignolo, Physica E 91, 136 (2017)

    Article  ADS  Google Scholar 

  17. R.J. Lifshitz, Alloys Compd. 342, 186 (2002)

    Article  Google Scholar 

  18. V. Sánchez, C. Wang, Phys. Rev. B 70, 144207 (2004)

    Article  ADS  Google Scholar 

  19. C. Sire, Europhys. Lett. 10, 483 (1989)

    Article  ADS  Google Scholar 

  20. V.Z. Cerovski, M. Schreiber, U. Grimm, Phys. Rev. B 72, 054203 (2005)

    Article  ADS  Google Scholar 

  21. S. Thiem, M. Schreiber, J. Phys.: Conf. Ser. 226, 012029 (2010)

    Google Scholar 

  22. S. Thiem, M. Schreiber, J. Phys.: Condens. Matter 25, 075503 (2013)

    ADS  Google Scholar 

  23. S. Thiem, M. Schreiber, Phys. Rev. B 85, 224205 (2012)

    Article  ADS  Google Scholar 

  24. G.Y. Oh, M.H. Lee, Phys. Rev. B 48, 12465 (1993)

    Article  ADS  Google Scholar 

  25. X. Fu, Y. Liu, Z. Guo, P. Zhou, X. Huang, Phys. Rev. B 51, 3910 (1995)

    Article  ADS  Google Scholar 

  26. F. Sánchez, V. Sánchez, C. Wang, J. Noncryst. Solids 450, 194 (2016)

    Article  ADS  Google Scholar 

  27. E. Maciá, Rep. Prog. Phys. 75, 036502 (2012)

    Article  ADS  Google Scholar 

  28. T. Takahashi, J. Math. Phys. 57, 063506 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. H.Q. Yuan, U. Grimm, P. Repetowicz, M. Schreiber, Phys. Rev. B 62, 15569 (2000)

    Article  ADS  Google Scholar 

  30. Y. Takahashi, Nonlinearity 30, 2114 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Lidl, H. Niederreiter, Introduction to finite fields and their applications (Cambridge University Press, London, 1986)

  32. R.J. Elliott, J.A. Krumhansl, P.L. Leath, Rev. Mod. Phys. 46, 465 (1974)

    Article  ADS  Google Scholar 

  33. E.N. Economou, Green’s functions in quantum physics, 3rd edn. (Springer, Berlin, 2006)

  34. V. Sánchez, C. Wang, J. Alloys Compd. 342, 410 (2002)

    Article  Google Scholar 

  35. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  36. R. Oviedo-Roa, L.A. Pérez, C. Wang, Phys. Rev. B 62, 13805 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chumin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, F., Sánchez, V. & Wang, C. Ballistic transport in aperiodic Labyrinth tiling proven through a new convolution theorem. Eur. Phys. J. B 91, 132 (2018). https://doi.org/10.1140/epjb/e2018-90070-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90070-4

Keywords

Navigation