Skip to main content
Log in

Entanglement in a fermionic spin chain containing a single mobile boson under decoherence

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The concurrence between first and the last sites of a fermionic spin chain containing a single boson is rigorously investigated at finite low temperature in the vicinity of a weak homogeneous magnetic field. We consider the boson as a mobile spin-1 particle through the chain and study concurrence without/under decoherence and express some interesting phase flip and bit flip reactions of the pairwise entanglement between first and the last half-spins in the chain. Our investigations show that the concurrence between two considered half-spins has different behavior for various positions of the single boson along the chain. Indeed, we realize that the single boson mobility has an essential role to probe the pairwise entanglement intensity between two spins located at the opposite ends of a fermionic chain. Interestingly, the entanglement remains alive for higher temperatures when the boson is the nearest neighbor of the first fermion. When the boson is at the middle of chain, it is demonstrated that the threshold temperature (at which the concurrence vanishes) versus decoherence rate can be considered as a threshold temperature boundary. These results pave the way to set and interpret the numerical and analytical expressions for utilizing quantum information in realistic scenarios such as quantum state transmission, quantum communication science and quantum information processing, where the both fermion–fermion and fermion–boson correlations should be taken in to account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Abgaryan, N.S. Ananikian, L.N. Ananikyan, V. Hovhannisyan, Solid State Commun. 203, 0038 (2015)

    Article  Google Scholar 

  2. K. Sengupta, D. Sen, Phys. Rev. A 80, 032304 (2009)

    Article  ADS  Google Scholar 

  3. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  4. N.S. Ananikian, L.N. Ananikyan, L.A. Chakhmakhchyan, O. Rojas, J. Phys.: Condens. Matter 24, 256001 (2012)

    ADS  Google Scholar 

  5. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  6. W.K. Wootters, Quantum Inf. Comput. 1, 27 (2001)

    MathSciNet  Google Scholar 

  7. R. Jafari, M. Kargarian, A. Langari, M. Siahatgar, Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  8. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  9. D. McMahon, Quantum Computing Explained (John Wiley & Sons, New York, 2008)

  10. P. Barmettler, M. Punk, V. Gritsev, E. Demler, E. Altman, New J. Phys. 12, 055017 (2010)

    Article  ADS  Google Scholar 

  11. F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, J. Wrachtrup, Nat. Phys. 9, 139 (2013)

    Article  Google Scholar 

  12. G.B. Furman, V.M. Meerovich, V.L. Sokolovsky, Quantum Inf. Process. 11, 1603 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  14. N. Canosa, R. Rossignoli, Phys. Rev. A 69, 052306 (2004)

    Article  ADS  Google Scholar 

  15. G.F. Zhang, S.S. Li, Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  16. F. Ghahari, V. Karimipour, R. Shahrokhshahi, Phys. Lett. A 363, 271 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. G.-F. Zhang, Z.-T. Jiang, A. Abliz, Ann. Phys. 326, 867 (2011)

    Article  ADS  Google Scholar 

  18. T. Tonegawa, T. Hikihara, M. Kaburagi, T. Nishino, S. Miyashita, H.J. Mikeska, J. Phys. Soc. Jpn. 67, 3 (1998)

    Article  Google Scholar 

  19. J. Torrico, M. Rojas, S.M. de Souza, O. Rojas, N.S. Ananikian, EPL 108, 50007 (2014)

    Article  ADS  Google Scholar 

  20. D.C. Li, X.P. Wang, Z.L. Cao, J. Phys.: Condens. Matter 20, 325229 (2008)

    Google Scholar 

  21. H. Arian Zad, N. Ananikian, J. Phys.: Condens. Matter 29, 455402 (2017)

    ADS  Google Scholar 

  22. O. Rojas, M. Rojas, N.S. Ananikian, S.M.D. Souza, Phys. Rev. A 86, 042330 (2012)

    Article  ADS  Google Scholar 

  23. V.S. Abgaryan, N.S. Ananikian, L.N. Ananikyan, V. Hovhannisyan, Solid State Commun. 224, 15 (2015)

    Article  ADS  Google Scholar 

  24. V.M.L. Durga Prasad Goli, S. Sahoo, S. Ramasesha, D. Sen, J. Phys.: Condens. Matter 25, 125603 (2013)

    ADS  Google Scholar 

  25. H. Arian Zad, H. Movahhedian, Int. J. Mod. Phys. B 31, 1750094 (2017)

    Article  Google Scholar 

  26. H. Arian Zad, N. Ananikian, J. Phys.: Condens. Matter 30, 165403 (2018)

    ADS  Google Scholar 

  27. H. Arian Zad, N. Ananikian, Solid State Commun. 276, 24 (2018)

    Article  ADS  Google Scholar 

  28. Z. Sun, X.M. Lu, H.N. Xiong, J. Ma, New J. Phys. 11, 113005 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Miyahara, K. Ueda, Phys. Rev. Lett. 82, 3701 (1999)

    Article  ADS  Google Scholar 

  30. H. Kageyama, K. Yoshimura, R. Stern, N.V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C.P. Slichter, T. Goto, Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999)

    Article  ADS  Google Scholar 

  31. M. Rojas, S.M. de Souza, O. Rojas, Ann. Phys. 377, 506 (2017)

    Article  ADS  Google Scholar 

  32. A. Koga, K. Okunishi, N. Kawakami, Phys. Rev. B 62, 5558 (2000)

    Article  ADS  Google Scholar 

  33. A. Koga, N. Kawakami, Phys. Rev. B 65, 214415 (2002)

    Article  ADS  Google Scholar 

  34. H.G. Paulinelli, S. de Souza, O. Rojas, J. Phys.: Condens. Matter 25, 306003 (2013)

    ADS  Google Scholar 

  35. T. Fukuhara et al., Nat. Phys. 9, 235 (2013)

    Article  Google Scholar 

  36. B. Li, Z.X. Wang, S.M. Fei, Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  37. J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Arian Zad, Chin. Phys. Lett. 33, 090302 (2016)

    Article  Google Scholar 

  39. W.H. Zurek, U. Dorner, P. Zoller, Phys. Rev. Lett. 95, 105701 (2005)

    Article  ADS  Google Scholar 

  40. K. Sengupta, D. Sen, S. Mondal, Phys. Rev. Lett. 100, 077204 (2008)

    Article  ADS  Google Scholar 

  41. G. Smith, J. Yard, Science 321, 5897 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Moradi (MKMajid).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zad, H.A., Moradi (MKMajid), M. Entanglement in a fermionic spin chain containing a single mobile boson under decoherence. Eur. Phys. J. B 91, 175 (2018). https://doi.org/10.1140/epjb/e2018-90039-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90039-3

Keywords

Navigation