Skip to main content

Density correlations induced by temperature fluctuations in a photon gas

Abstract

The impact of angular temperature variations on the thermodynamic variables and real-space correlation functions of black-body radiation are analyzed. In particular, the effect of temperature fluctuations on the number density and energy density correlations of the cosmic microwave background (CMB) is studied. The angular temperature fluctuations are modeled by an isotropic and homogeneous Gaussian random field, whose autocorrelation function is defined on the unit sphere in momentum space. This temperature correlation function admits an angular Fourier transform which determines the density correlations in real space induced by temperature fluctuations. In the case of the CMB radiation, the multipole coefficients of the angular power spectrum defining the temperature correlation function have been measured by the Planck satellite. The fluctuation-induced perturbation of the equilibrium variables (internal energy, entropy, heat capacity and compressibility) can be quantified in terms of the measured multipole coefficients by expanding the partition function around the equilibrium state in powers of the temperature random field. The real-space density correlations can also be extracted from the measured temperature power spectrum. Both the number density and energy density correlations of the electromagnetic field are long-range, admitting power-law decay; in the case of the energy density correlation, the fluctuation-induced correlation overpowers the isotropic equilibrium correlation in the long-distance limit.

This is a preview of subscription content, access via your institution.

References

  1. Planck Collaboration, Astron. Astrophys. 594, A1 (2016)

    Article  Google Scholar 

  2. Planck Collaboration, Astron. Astrophys. 594, A11 (2016)

    Article  Google Scholar 

  3. Planck Legacy Archive, Release PR2, 2015, Available at: http://pla.esac.esa.int/pla/

  4. G.-H. Liu, W. Li, G. Su, G.-S. Tian, Eur. Phys. J. B 87, 105 (2014)

    ADS  Article  Google Scholar 

  5. G.-H. Liu, L.-J. Kong, W.-L. You, Eur. Phys. J. B 88, 284 (2015)

    ADS  Article  Google Scholar 

  6. M. Wang, S.-J. Ran, T. Liu, Y. Zhao, Q.-R. Zheng, G. Su, Eur. Phys. J. B 89, 27 (2016)

    ADS  Article  Google Scholar 

  7. L. Pan, D. Zhang, H.-H. Hung, Y.-J. Liu, Eur. Phys. J. B 90, 105 (2017)

    ADS  Article  Google Scholar 

  8. S. Tarat, P. Majumdar, Eur. Phys. J. B 88, 68 (2015)

    ADS  Article  Google Scholar 

  9. W.C. Yu, S.-J. Gu, H.-Q. Lin, Eur. Phys. J. B 89, 212 (2016)

    ADS  Article  Google Scholar 

  10. Y. Fujiki, S. Mizutaka, K. Yakubo, Eur. Phys. J. B 90, 126 (2017)

    ADS  Article  Google Scholar 

  11. Y. Zhang, X. Li, Eur. Phys. J. B 88, 61 (2015)

    ADS  Article  Google Scholar 

  12. A. Mehri, S.M. Lashkari, Eur. Phys. J. B 89, 241 (2016)

    ADS  Article  Google Scholar 

  13. Y. Matsubara, Y. Hieida, S. Tadaki, Eur. Phys. J. B 86, 371 (2013)

    ADS  Article  Google Scholar 

  14. P. Wang, Z. Chang, H. Wang, H. Lu, Eur. Phys. J. B 90, 214 (2017)

    ADS  Article  Google Scholar 

  15. R. Tomaschitz, Physica A 483, 438 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  16. R. Tomaschitz, Astropart. Phys. 84, 36 (2016)

    ADS  Article  Google Scholar 

  17. Pierre Auger Collaboration, J. Cosmol. Astropart. Phys. JCAP06, 026 (2017)

    Google Scholar 

  18. IceCube Collaboration, Astrophys. J. 826, 220 (2016)

    ADS  Article  Google Scholar 

  19. HAWC Collaboration, Astrophys. J. 796, 108 (2014)

    ADS  Article  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory, 3rd edn. (Pergamon, London, 1991)

  21. R.G. Newton, Scattering theory of waves and particles (Springer, New York, 1982)

  22. G.N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, Cambridge, 1996)

  23. A.D. Jackson, L.C. Maximon, SIAM J. Math. Anal. 3, 446 (1972)

    MathSciNet  Article  Google Scholar 

  24. R. Mehrem, Appl. Math. Comput. 217, 5360 (2011)

    MathSciNet  Google Scholar 

  25. V.I. Fabrikant, Quart. Appl. Math. 71, 573 (2013)

    MathSciNet  Article  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Statistical physics, 3rd edn. (Pergamon, Oxford, 1980)

  27. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Digital Library of Mathematical Functions, Release 1.0.16, 2017, Availbale at: http://dlmf.nist.gov

  28. R. Tomaschitz, Mon. Not. R. Astron. Soc. 427, 1363 (2012)

    ADS  Article  Google Scholar 

  29. Planck Collaboration, Astron. Astrophys. 571, A27 (2014)

    Article  Google Scholar 

  30. Pierre Auger Collaboration, Science 357, 1266 (2017)

    ADS  Article  Google Scholar 

  31. C. Patrignani et al., Chin. Phys. C 40, 100001 (2016)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Tomaschitz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomaschitz, R. Density correlations induced by temperature fluctuations in a photon gas. Eur. Phys. J. B 91, 115 (2018). https://doi.org/10.1140/epjb/e2018-80673-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80673-0

Keywords

  • Statistical and Nonlinear Physics