Skip to main content
Log in

A first-principles study on DNA sequencing using graphene quantum dot

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we propose a new device based on graphene quantum dot (GQD) to interrogate nucleotide in a DNA molecule. We have conducted non-equilibrium Green’s function together with the density functional theory simulations to show zero transmission curves for a system which includes nucleobases. The simulation results indicates several characteristic peaks in the electron transmission curve for any single base on the quantum dot which can be utilized to distinguish between bases. Number and positions of the peaks, as well as their amplitude, depend on the type of the bases and their relative position to the dot. Thus, this structure shows remarkable distinction characteristic in zero bias transmission curve and can yield minimal ambiguity in the adenine, cytosine, guanine and thymine nucleotide detection. Due to stacking of nucleobases on the graphene and consequent attenuation in directional fluctuations, stable measurement is also expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S. Collins, E.D. Green, A.E. Guttmacher, M.S. Guyer, Nature 442, 835 (2003)

    Article  ADS  Google Scholar 

  2. R.F. Service, Science 311, 1544 (2006)

    Article  Google Scholar 

  3. D.W. Deamer, D. Branton, Acc. Chem. Res. 35, 817 (2006)

    Article  Google Scholar 

  4. J. Clarke, Nat. Nanotechnol. 4, 26 (2009)

    Article  Google Scholar 

  5. D. Fologea et al., Nano Lett. 5, 1905 (2005)

    Article  ADS  Google Scholar 

  6. M. Jain, H.E. Olsen, B. Paten, M. Akeson, Genome Biol. 17, 239 (2016)

    Article  Google Scholar 

  7. E. Paulechka, T.A. Wassenaar, K. Kroenlein, A. Kazakova, A. Smolyanitsky, Nanoscale 4, 30 (2015)

    Google Scholar 

  8. S.K. Min, W.Y. Kim, Y. Cho, K.S. Kim, Nat. Nanotechnol. 6, 162 (2011)

    Article  ADS  Google Scholar 

  9. I. Yanagi, T. Oura, T. Haga, M. Ando, J. Yamamoto, T. Mine, T. Ishida, T. Hatano, R. Akahori, T. Yokoi, T. Anazawa, Nanotechnology 27, 115501 (2016)

    Article  ADS  Google Scholar 

  10. A.B. Farimani, K. Min, N.R. Aluru, ACS Nano 8, 7914 (2014)

    Article  Google Scholar 

  11. Z. Zhang, J. Shen, H. Wang, Q. Wang, J. Zhang, L. Liang, H. gren, Y. Tu, J. Phys. Chem. Lett. 5, 1602 (2014)

    Article  Google Scholar 

  12. J. Comer, A. Aksimentiev, Nanoscale 8, 9600 (2016)

    Article  ADS  Google Scholar 

  13. S. Howorka, Nat. Nanotechnol. 12, 619 (2017)

    Article  ADS  Google Scholar 

  14. S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, S.P. Karna, Phys. Rev. B 76, 033401 (2007)

    Article  ADS  Google Scholar 

  15. D. Branton, Nat. Biotechnol. 26, 1146 (2008)

    Article  Google Scholar 

  16. K.K. Saha, M. Drndić, B.K. Nikoli, Nano Lett. 12, 50 (2012)

    Article  ADS  Google Scholar 

  17. A.P. Ivanov, E. Instuli, C.M. McGilvery, Nano Lett. 11, 279 (2011)

    Article  ADS  Google Scholar 

  18. P. Xie, Q. Xiong, Y. Fang, Nat. Nanotechnol. 7, 119 (2011)

    Article  ADS  Google Scholar 

  19. F. Traversi, C. Raillon, S. Benameur, Nat. Nanotech. 8, 939 (2013)

    Article  ADS  Google Scholar 

  20. S. Sanyal, A.K. Mannaa, S.K. Pati, J. Mater. Chem. C 2, 2918 (2014)

    Article  Google Scholar 

  21. K.A. Ritter, J.W. Lyding, Nat. Mater. 8, 235 (2009)

    Article  ADS  Google Scholar 

  22. S. Huang, L. Wang, C. Huang, W. Su, Q. Xiao, Sens. Actuators B: Chem. 245, 648 (2017)

    Article  Google Scholar 

  23. D. Yadav, S.B. Tombet, T. Watanabe, S. Arnold, V. Ryzhii, T. Otsuji, 2D Mater. 3, 045009 (2016)

    Article  Google Scholar 

  24. J. Gaskell, L. Eaves, K.S. Novoselov, A. Mishchenko, A.K. Geim, T.M. Fromhold, M.T. Greenaway, Appl. Phys. Lett. 107, 103105 (2015)

    Article  ADS  Google Scholar 

  25. Y. Zhao, Z. Wan, X. Xu, S.R. Patil, U. Hetmaniuk, M.P. Anantram, Sci. Rep. 5, 10712 (2015)

    Article  ADS  Google Scholar 

  26. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, L. Eaves, Nat. Commun. 4, 1794 (2013)

    Article  ADS  Google Scholar 

  27. X. Pan, E. Skafidas, Nanoscale 48, 20074 (2016)

    Article  Google Scholar 

  28. M. Sharifi, E. Akhoundi, H. Esmaili, J. Comput. Electron. 15, 1361 (2016)

    Article  Google Scholar 

  29. J. Cai, Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  30. D.V. Kosynkin, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  31. L. Jiao, L. Zhang, L. Wang, X. Diankov, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  32. W. Chen, G.-C. Liu, J. Ouyang, M.-J. Gao, B. Liu, Y.-D. Zhao, Sci. Chin. Chem. 60, 721 (2017)

    Article  Google Scholar 

  33. L. Liu, Phys. Rev. B 68, 104102 (2003)

    Article  ADS  Google Scholar 

  34. C.R. Dean, Nat. Nanotechnol. 5, 722 (2010)

    Article  ADS  Google Scholar 

  35. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D.J. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  36. N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  37. J.C Wang, PNAS 76, 200 (1979)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 1396 (1996)

    Article  Google Scholar 

  39. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  40. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  41. Y. Meir, S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  42. X. Liang, S.Y. Chou, Nano Lett. 8, 1472 (2008)

    Article  ADS  Google Scholar 

  43. J.H. Jett, J. Biomol. Struct. Dyn. 7, 301 (1989)

    Article  Google Scholar 

  44. A. Seabaugh, Y.-C. Kao, J. Randall, W. Frensley, A. Khatibzadeh, Jpn. J. Appl. Phys. 30, 921 (1991)

    Article  ADS  Google Scholar 

  45. F. Al-Dirini et al., J. Electron. Device Soc. 4, 30 (2016)

    Article  Google Scholar 

  46. W.L. Wang, E.J.G. Santos, B. Jiang, E.D. Cubuk, C. Ophus, A. Centeno, A. Pesquera, A. Zurutuza, J. Ciston, R. Westervelt, E. Kaxiras, Nano Lett. 14, 450 (2014)

    Article  ADS  Google Scholar 

  47. L.C. Campos, V.R. Manfrinato, J.D. Sanchez-Yamagishi, J. Kong, P. Jarillo-Herrero, Nano Lett. 9, 2600 (2009)

    Article  ADS  Google Scholar 

  48. T.S. Sreeprasad, A.A. Rodriguez, J. Colston, A. Graham, E. Shishkin, V. Pallem, V. Berry, Nano Lett. 13, 1757 (2013)

    Article  ADS  Google Scholar 

  49. A. Barreiro, H.S.J. van der Zant, L.M.K. Vandersypen, Nano Lett. 12, 6096 (2012)

    Article  ADS  Google Scholar 

  50. L.A. Ponomarenko, Science 320, 356 (2008)

    Article  ADS  Google Scholar 

  51. A. Kimouche, M.M. Ervasti, R. Drost, S. Halonen, A. Harju, P.M. Joensuu, J. Sainio, P. Liljeroth, Nat. Commun. 12, 10177 (2015)

    Article  Google Scholar 

  52. F. Brrnert, L. Fu, S. Gorantla, M. Knupfer, B. Bchner, M.H. Rmmeli, Acs Nano 6, 10327 (2012)

    Article  Google Scholar 

  53. M.C. Lemme, D.C. Bell, J.R. Williams, L.A. Stern, B.W.H. Baugher, P. Jarillo-Herrero, C.M. Marcus, Acs Nano 3, 2674 (2009)

    Article  Google Scholar 

  54. G. Sh, R. Scheicher, R. Ahuja, R. Pandey, S.P. Karna, Phys. Rev. B 76, 033401 (2007)

    ADS  Google Scholar 

  55. S.G. Stepanian, M.V. Karachevtsev, V.A. Karachevtsev, L. Adamowicz, Chem. Phys. Lett. 610–611, 186 (2014)

    Article  Google Scholar 

  56. J.-H. Lee, Y.-K. Choi, H.-J. Kim, R.H. Scheicher, J.-H. Cho, J. Phys. Chem. C 117, 13435 (2013)

    Article  Google Scholar 

  57. Y. Cho, S.K. Min, J. Yun, W.Y. Kim, A. Tkatchenko, K.S. Kim, J. Chem. Theory Comput. 9, 2090 (2013)

    Article  Google Scholar 

  58. A.R. Garrigues, L. Yuan, L. Wang, E.R. Mucciolo, D. Thompon, E. del Barco, C.A. Nijhuis, Sci. Rep. 6, 26517 (2016)

    Article  ADS  Google Scholar 

  59. K. Moth-Poulsen, T. Bjørnholm, Nat. Nanotechnol. 4, 551 (2009)

    Article  ADS  Google Scholar 

  60. M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys.: Condens. Matter 20, 083203 (2008)

    ADS  Google Scholar 

  61. R. Stadler, V. Geskin, J. Cornil, Phys. Rev. B 78, 113402 (2008)

    Article  ADS  Google Scholar 

  62. S. Datta, Quantum transport: atom to transistor (Cambridge University Press, Cambridge, 2005)

  63. M. Hammonds, A. Pathak, P.J. Sarre, Phys. Chem. Chem. Phys. 11, 4458 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Fathipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastgoo, M., Tabatabaei, SM. & Fathipour, M. A first-principles study on DNA sequencing using graphene quantum dot. Eur. Phys. J. B 91, 121 (2018). https://doi.org/10.1140/epjb/e2018-80666-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80666-y

Keywords

Navigation