Skip to main content

Advertisement

Log in

Waveguides as sources of short-wavelength spin waves for low-energy ICT applications

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Spin waves offer intriguing possibilities for transmitting and processing information in future low-power electronics. Most proposed devices, however, require the efficient excitation and detection of spin waves in the sub-micrometer range, that is a rather challenging task. In fact, coplanar and microstrip waveguides have been widely used in the past to excite and detect spin waves with wavelengths of tens of microns in thin films of both metallic ferromagnets and on magnetic insulators, but the scalability of these structures micrometer or sub-micrometer have not been investigated in detail. In this study, we present a combined experimental/computational study of a few possible input structures consisting of either symmetrical or asymmetrical coplanar waveguides on top of CoFe films, with widths going all the way down to 250 nm. The primary goal of this work is to present a case study, aiming to explore the limitations of waveguides in creating short-wavelength spin waves for future nanoelectronic applications. We use micro-focused Brillouin light scattering measurements and micromagnetic simulations to analyze the characteristics of the emitted spin waves, achieving reasonable agreement between experiment and simulations. We find that due to the inherently delocalized field distributions of waveguides, and also to the relatively high resistivity of narrow waveguides, they all show poor efficiency for generating spin waves with wavelength below about 2 μm, corresponding to frequencies above 10 GHz in a moderate external field. This means that the intensity of the generated spin waves for a given input power drops quickly for the frequency/wavelength range which is most relevant for emerging applications. This case study demonstrates many of the inherent inefficiencies and limitations of waveguide-based spin wave generation in this regime. Our work supports the conclusion that one may have to use a different mechanism for spin wave generation, exploiting multiferroic structures, spin-orbit torques or nanopatterned, multi-layered magnetic materials, all being the subject of intense current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Csaba, A. Papp, W. Porod, Phys. Lett. A 381, 1471 (2017)

    Article  ADS  Google Scholar 

  2. A.V. Chumak, A.A. Serga, B. Hillebrands, Nat. Commun. 5, 4700 (2014)

    Article  ADS  Google Scholar 

  3. A. Khitun, K.L. Wang, Superlattices Microstruct. 38, 184 (2005)

    Article  ADS  Google Scholar 

  4. G. Csaba, A. Papp, W. Porod, J. Appl. Phys. 115, 17C741 (2014)

    Article  Google Scholar 

  5. A. Khitun, K.L. Wang, Superlattices Microstruct. 38, 184 (2005)

    Article  ADS  Google Scholar 

  6. A. Khitun, A. Kozhanov, Magnonic logic devices, in Nanomagnetic and spintronic devices for energy-efficient memory and computing, edited by J. Atulasimha, S. Bandyopadhyay (Virginia Commonwealth University, US), pp. 189–219

  7. Á. Papp, W. Porod, Á.I. Csurgay, G. Csaba, Sci. Rep. 7, 9245 (2017)

    Article  ADS  Google Scholar 

  8. D.R. Birt et al., Appl. Phys. Lett. 101, 252409 (2012)

    Article  ADS  Google Scholar 

  9. M. Covington, T.M. Crawford, G.J. Parker, Phys. Rev. Lett. 89, 237202 (2002)

    Article  ADS  Google Scholar 

  10. S. Maendl, I. Stasinopoulos, D. Grundler, Appl. Phys. Lett. 111, 012403 (2017)

    Article  ADS  Google Scholar 

  11. L. Fallarino, M. Madami, G. Duerr, D. Grundler, G. Gubbiotti, S. Tacchi, G. Carlotti, IEEE Trans. Magn. 49, 1033 (2013)

    Article  ADS  Google Scholar 

  12. J. Stigloher, M. Decker, H. Körner, K. Tanabe, T. Moriyama, T. Taniguchi, H. Hata, M. Madami, G. Gubbiotti, K. Kobayashi, T. Ono, C.H. Back, Phys. Rev. Lett. 117, 037204 (2016)

    Article  ADS  Google Scholar 

  13. V.E. Demidov, M.P. Kostylev, K. Rott, P. Krzysteczko, G. Reiss, S.O. Demokritov, Appl. Phys. Lett. 95, 112509 (2009)

    Article  ADS  Google Scholar 

  14. S. Tacchi, G. Gubbiotti, M. Madami, G. Carlotti, J. Phys.: Condens. Matter 29, 073001 (2017)

    ADS  Google Scholar 

  15. M. Madami, G. Gubbiotti, S. Tacchi, G. Carlotti, Application of micro-focused Brillouin light scattering to the study of spin waves in low dimensional magnetic system, in Solid state physics, edited by R.E. Camley, R.L. Stamps (Elsevier, Amsterdam, 2013), Vol. 62

  16. K. Vogt, H. Schulteiss, S.J. Hermsdoerfer, P. Pirro, A.A. Serga, B. Hillebrands, Appl. Phys. Lett. 95, 182508 (2009)

    Article  ADS  Google Scholar 

  17. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, MD, 1999), Available at: http://math.nist.gov/oommf/

  18. http://www.ansys.com/Products/Electronics/ANSYS-HFSS

  19. D.D. Stancil, A. Prabhakar, in Spin waves: theory and applications (Springer London Limited, London, 2009), pp. 141 and 155

  20. S. Kaka et al., Nature 437, 389 (2005)

    Article  ADS  Google Scholar 

  21. P. Li et al., Nat. Commun. 7, 12688 (2016)

    Article  ADS  Google Scholar 

  22. S. Cherepov et al., Appl. Phys. Lett. 104, 082403 (2014)

    Article  ADS  Google Scholar 

  23. L. Chuanpu et al., Nat. Commun. 9, 738 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Madami.

Additional information

Contribution to the Topical Issue “The Physics of Micro-Energy Use and Transformation”, edited by Luca Gammaitoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papp, A., Csaba, G., Dey, H. et al. Waveguides as sources of short-wavelength spin waves for low-energy ICT applications. Eur. Phys. J. B 91, 107 (2018). https://doi.org/10.1140/epjb/e2018-80623-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80623-x

Navigation