Skip to main content
Log in

Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (P(E)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P(E) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P(E) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  3. A. Kara, H. Enriquez, A.P. Seitsonen, L.C.L.Y. Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 67, 141 (2012)

    Article  ADS  Google Scholar 

  4. Y. Xu, J. Dai, X.C. Zeng J. Phys. Chem. Lett 6, 1996 (2015)

    Article  Google Scholar 

  5. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  6. M. Ezawa, N. Nagaosa, arXiv:1301.6337 (2013)

  7. A.K. Geim, A.H. MacDonald, Phys. Today 60, 35 (2007)

    Google Scholar 

  8. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejn, Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  9. Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, M.J. Puska, Phys. Rev. B 81, 245402 (2010)

    Article  ADS  Google Scholar 

  10. L.I.A. López, A. Champi, S. Ujevic, M. Mendoza, Eur. Phys. J. B 88, 298 (2015)

    Article  ADS  Google Scholar 

  11. L. Majidi, M. Zareyan, Phys. Rev. B 83, 115422 (2011)

    Article  ADS  Google Scholar 

  12. H. Min, G. Borghi, M. Polini, A.H. MacDonald, Phys. Rev. B 77, 041407(R) (2008)

    Article  ADS  Google Scholar 

  13. S.H. Abedinpour, M. Polini, A.H. MacDonald, B. Tanatar, M.P. Tosi, G. Vignale, Phys. Rev. Lett. 99, 206802 (2007)

    Article  ADS  Google Scholar 

  14. E.R. Mucciolo, A.H. Castro Neto, C.H. Lewenkopf, Phys. Rev. B 79, 075407 (2009)

    Article  ADS  Google Scholar 

  15. D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012)

    Article  ADS  Google Scholar 

  16. L.I.A. López, S.M. Yaro, A. Champi, S. Ujevic, M. Mendoza, J. Phys.: Condens. Matter 26, 065301 (2014)

    Google Scholar 

  17. C. Lin, Y. Feng, Y. Xiao, M. Drr, X. Huang, X. Xu, R. Zhao, E. Wang, X.-Z. Li, Z. Hu, Nano Lett. 15, 903 (2015)

    Article  ADS  Google Scholar 

  18. D.Y. Usachov, A.V. Fedorov, O.Y. Vilkov, A.E. Petukhov, A.G. Rybkin, A. Ernst, M.M. Otrokov, E.V. Chulkov, I.I. Ogorodnikov, M.V. Kuznetsov, L.V. Yashina, E.Yu. Kataev, A.V. Erofeevskaya, V.Y. Voroshnin, V.K. Adamchuk, C. Laubschat, D.V. Vyalikh, Nano Lett. 16, 4535 (2016)

    Article  ADS  Google Scholar 

  19. J.A. Lawlor, P.D. Gorman, S.R. Power, C.G. Bezerra, M.S. Ferreira, Carbon 77, 645 (2014)

    Article  Google Scholar 

  20. A. Zabet-Khosousi, L. Zhao, L. Plov, M.S. Hybertsen, D.R. Reichman, A.N. Pasupathy, G.W. Flynn, J. Am. Chem. Soc. 136 1391 (2014)

    Article  Google Scholar 

  21. A. Celis, M.N. Nair, A. Taleb-Ibrahimi, E.H. Conrad, C. Berger, W.A. de Heer, A. Tejeda, J. Phys. D: Appl. Phys. 49, 143001 (2016)

    Article  ADS  Google Scholar 

  22. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  23. R. Stacey, Phys. Rev. D 26, 468 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Susskind, Phys. Rev. D 16, 3031 (1977)

    Article  ADS  Google Scholar 

  25. H. Gausterer, C.B. Lang, Phys. Rev. D 36, 1229 (1987)

    Article  ADS  Google Scholar 

  26. J.R. Klauder, S. Lee, Phys. Rev. D 45, 2101 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999)

    Article  ADS  Google Scholar 

  28. A.V. Rozhkov, S. Savel’ev, F. Nori, Phys. Rev. B 79, 125420 (2009)

    Article  ADS  Google Scholar 

  29. H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen, Phys. Rev. B 75, 165414 (2007)

    Article  ADS  Google Scholar 

  30. S. Datta, Quantum transport: atom to transistor (Cambridge University Press, Cambridge, 2005)

  31. S. Ujevic, M. Mendoza, Phys. Rev. B 82, 035432 (2010)

    Article  ADS  Google Scholar 

  32. C.H. Lewenkopf, E.R. Mucciolo, J. Comput. Electron. 12, 203 (2013)

    Article  Google Scholar 

  33. A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 77, 075416 (2008)

    Article  ADS  Google Scholar 

  34. M. Mendoza, P.A. Schulz, Phys. Rev. B 68, 205302 (2003)

    Article  ADS  Google Scholar 

  35. M.A. Topinka et al., Science 289, 2323 (2000)

    Article  ADS  Google Scholar 

  36. D. Ferry, S.M. Goodnick, Transport in nanostructures (Cambridge University Press, Cambridge, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis I. A. López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, L.I.A., Mendoza, M. Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model. Eur. Phys. J. B 91, 157 (2018). https://doi.org/10.1140/epjb/e2018-80594-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80594-x

Keywords

Navigation