Skip to main content
Log in

Magnetic islands modelled by a phase-field-crystal approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Langer, in Directions in condensed matter physics, edited by G. Grinstein, G. Mazenko (World Scientific, Singapore, 1986), p. 165

  2. L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)

    Article  Google Scholar 

  3. N. Provatas, K. Elder, Phase field methods in material science and engineering (Wiley-VCH, New York, 2010)

  4. K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88, 245701 (2002)

    Article  ADS  Google Scholar 

  5. P.F. Tupper, M. Grant, Europhys. Lett. 81, 40007 (2008)

    Article  ADS  Google Scholar 

  6. K.R. Elder, M. Grant, Phys. Rev. E 70, 051605 (2004)

    Article  ADS  Google Scholar 

  7. H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.L. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61, 665 (2012)

    Article  ADS  Google Scholar 

  8. K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phys. Rev. B 75, 064107 (2007)

    Article  ADS  Google Scholar 

  9. A. Jaatinen, C.V. Achim, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009)

    Article  ADS  Google Scholar 

  10. A. Jaatinen, T. Ala-Nissila, Phys. Rev. E 82, 061602 (2010)

    Article  ADS  Google Scholar 

  11. K.A. Wu, A. Karma, Phys. Rev. B 76, 184107 (2007)

    Article  ADS  Google Scholar 

  12. M. Greenwood, N. Provatas, J. Röttler, Phys. Rev. Lett. 105, 045702 (2010)

    Article  ADS  Google Scholar 

  13. M. Greenwood, J. Röttler, N. Provatas, Phys. Rev. E 83, 031601 (2011)

    Article  ADS  Google Scholar 

  14. M. Greenwood, N. Ofori-Opoku, J. Röttler, N. Provatas, Phys. Rev. E 83, 031601 (2011)

    Article  ADS  Google Scholar 

  15. K.A. Wu, A. Adland, A. Karma, Phys. Rev. E 81, 061601 (2010)

    Article  ADS  Google Scholar 

  16. R. Lifshitz, D.M. Petrich, Phys. Rev. Lett. 79, 1261 (1997)

    Article  ADS  Google Scholar 

  17. S.K. Mkhonta, K.R. Elder, Z.F. Huang, Phys. Rev. Lett. 111, 035501 (2013)

    Article  ADS  Google Scholar 

  18. N. Faghihi, Phase-field-crystal approach to the solidification of ferromagnetic materials, Ph.D. thesis, Western University, 2012

  19. N. Faghihi, N. Provatas, K.R. Elder, M. Grant, M. Karttunen, Phys. Rev. E 88, 032407 (2013)

    Article  ADS  Google Scholar 

  20. M. Seymour, F. Sanches, K. Elder, N. Provatas, Phys. Rev. B 92, 184109 (2015)

    Article  ADS  Google Scholar 

  21. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997)

    Article  ADS  Google Scholar 

  22. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature 439, 303 (2006)

    Article  ADS  Google Scholar 

  23. G. Möller, R. Moessner, Phys. Rev. B 80, 140409(R) (2009)

    Article  Google Scholar 

  24. S. Zhang, I. Gilbert, C. Nisoli, G.W. Chern, M.J. Erickson, L. OBrien, C. Leighton, P.E. Lammert, V.H. Crespi, P. Schiffer, Nature 500, 553 (2013)

    Article  ADS  Google Scholar 

  25. K.A. Wu, M. Plapp, P.W. Voorhees, J. Phys. Condens. Matter 22, 364102 (2010)

    Article  Google Scholar 

  26. P.M. Chaikin, T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 2000)

  27. Y. Zhang, C. Esling, in Phase transformations in steels, edited by E. Pereloma, D.V. Edmonds (Woodhead Publishing Limited, 2012), Vol. 1, Chap. 16

  28. V.D. Sadovskii, N.M. Rodigin, L.V. Smirnov, G.M. Filonchik, I.G. Fakidov, Fiz. Metal. Metalloved. 12, 131 (1961)

    Google Scholar 

  29. C.C. Koch, Mater. Sci. Eng. A 287, 213 (2000)

    Article  Google Scholar 

  30. B. Grossmann, H. Guo, M. Grant, Phys. Rev. A 43, 1727 (1991)

    Article  ADS  Google Scholar 

  31. K.R. Elder, M. Grant, N. Provatas, J.M. Kosterlitz, Phys. Rev. E 64, 021604 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloufar Faghihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghihi, N., Mkhonta, S., Elder, K.R. et al. Magnetic islands modelled by a phase-field-crystal approach. Eur. Phys. J. B 91, 55 (2018). https://doi.org/10.1140/epjb/e2018-80543-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80543-9

Keywords

Navigation