Advertisement

Magnetic islands modelled by a phase-field-crystal approach

  • Niloufar Faghihi
  • Simiso Mkhonta
  • Ken R. Elder
  • Martin Grant
Regular Article
  • 75 Downloads

Abstract

Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.

Keywords

Solid State and Materials 

References

  1. 1.
    J. Langer, in Directions in condensed matter physics, edited by G. Grinstein, G. Mazenko (World Scientific, Singapore, 1986), p. 165 Google Scholar
  2. 2.
    L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002) CrossRefGoogle Scholar
  3. 3.
    N. Provatas, K. Elder, Phase field methods in material science and engineering (Wiley-VCH, New York, 2010) Google Scholar
  4. 4.
    K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88, 245701 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    P.F. Tupper, M. Grant, Europhys. Lett. 81, 40007 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    K.R. Elder, M. Grant, Phys. Rev. E 70, 051605 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.L. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61, 665 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phys. Rev. B 75, 064107 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A. Jaatinen, C.V. Achim, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A. Jaatinen, T. Ala-Nissila, Phys. Rev. E 82, 061602 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Wu, A. Karma, Phys. Rev. B 76, 184107 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    M. Greenwood, N. Provatas, J. Röttler, Phys. Rev. Lett. 105, 045702 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    M. Greenwood, J. Röttler, N. Provatas, Phys. Rev. E 83, 031601 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    M. Greenwood, N. Ofori-Opoku, J. Röttler, N. Provatas, Phys. Rev. E 83, 031601 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    K.A. Wu, A. Adland, A. Karma, Phys. Rev. E 81, 061601 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    R. Lifshitz, D.M. Petrich, Phys. Rev. Lett. 79, 1261 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    S.K. Mkhonta, K.R. Elder, Z.F. Huang, Phys. Rev. Lett. 111, 035501 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    N. Faghihi, Phase-field-crystal approach to the solidification of ferromagnetic materials, Ph.D. thesis, Western University, 2012 Google Scholar
  19. 19.
    N. Faghihi, N. Provatas, K.R. Elder, M. Grant, M. Karttunen, Phys. Rev. E 88, 032407 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    M. Seymour, F. Sanches, K. Elder, N. Provatas, Phys. Rev. B 92, 184109 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature 439, 303 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    G. Möller, R. Moessner, Phys. Rev. B 80, 140409(R) (2009) CrossRefGoogle Scholar
  24. 24.
    S. Zhang, I. Gilbert, C. Nisoli, G.W. Chern, M.J. Erickson, L. OBrien, C. Leighton, P.E. Lammert, V.H. Crespi, P. Schiffer, Nature 500, 553 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    K.A. Wu, M. Plapp, P.W. Voorhees, J. Phys. Condens. Matter 22, 364102 (2010) CrossRefGoogle Scholar
  26. 26.
    P.M. Chaikin, T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 2000) Google Scholar
  27. 27.
    Y. Zhang, C. Esling, in Phase transformations in steels, edited by E. Pereloma, D.V. Edmonds (Woodhead Publishing Limited, 2012), Vol. 1, Chap. 16 Google Scholar
  28. 28.
    V.D. Sadovskii, N.M. Rodigin, L.V. Smirnov, G.M. Filonchik, I.G. Fakidov, Fiz. Metal. Metalloved. 12, 131 (1961) Google Scholar
  29. 29.
    C.C. Koch, Mater. Sci. Eng. A 287, 213 (2000) CrossRefGoogle Scholar
  30. 30.
    B. Grossmann, H. Guo, M. Grant, Phys. Rev. A 43, 1727 (1991) ADSCrossRefGoogle Scholar
  31. 31.
    K.R. Elder, M. Grant, N. Provatas, J.M. Kosterlitz, Phys. Rev. E 64, 021604 (2001) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Niloufar Faghihi
    • 1
  • Simiso Mkhonta
    • 2
  • Ken R. Elder
    • 3
  • Martin Grant
    • 1
  1. 1.Physics Department, Rutherford Building, 3600 rue University, McGill UniversityMontréalCanada
  2. 2.Department of PhysicsUniversity of Swaziland, Private Bag 4KwaluseniSwaziland
  3. 3.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations