Advertisement

Strong electron–phonon interaction and colossal magnetoresistance in EuTiO3

  • Ruofan Chen
  • Ji-Chang Ren
  • Km Rubi
  • Ramanathan Mahendiran
  • Jian-Sheng Wang
Regular Article

Abstract

At low temperatures, EuTiO3 system has very large resistivities and exhibits colossal magnetoresistance. Based on a first principle calculation and the dynamical mean-field theory for small polaron we have calculated the transport properties of EuTiO3. It is found that due to electron–phonon interaction the conduction band may form a tiny polaronic subband which is close to the Fermi level. The tiny subband is responsible for the large resistivity. Besides, EuTiO3 is a weak antiferromagnetic material and its magnetization would slightly shift the subband via exchange interaction between conduction electrons and magnetic atoms. Since the subband is close to the Fermi level, a slight shift of its position gives colossal magnetoresistance.

Keywords

Solid State and Materials 

References

  1. 1.
    A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77, 175 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Millis, R. Mueller, B.I. Shraiman, Phys. Rev. B. 54, 5405 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Millis, Nature 392, 147 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    J. Zang, A.R. Bishop, H. Röder, Phys. Rev. B. 53, R8840 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    H. Röder, J. Zang, A.R. Bishop, Phys. Rev. Lett. 76, 1356 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    Q. Li, J. Zang, A.R. Bishop, C.M. Soukoulis, Phys. Rev. B. 56, 4541 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    R. Shen, Z.-Z. Li, Solid State Commun. 110, 237 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    G.-M. Zhao, V. Smolyaninova, W. Prellier, H. Keller, Phys. Rev. Lett. 84, 6086 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    K. Rubi, R. Mahendiran, Europhys. Lett. 118, 57008 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    A. Midya et al., Phys. Rev. B. 93, 094422 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    V.N. Bogomolov et al., Phys. Status Solidi 27, 443 (1968) CrossRefGoogle Scholar
  13. 13.
    V.N. Bogomolov et al., Phys. Status Solidi 35, 555 (1969) CrossRefGoogle Scholar
  14. 14.
    T. Katsufuji, H. Takagi, Phys. Rev. B. 64, 054415 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    B.P. Alho, A.M.G. Carvalho, P.J. von Ranke, J. Magn. Magn. Mater. 324, 210 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    P.J. von Ranke et al., J. Magn. Magn. Mater. 324, 1290 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    C. Haas, CRC. Crit. Rev. Solid State. Sci. 1, 47 (1970) CrossRefGoogle Scholar
  18. 18.
    T. Holstein, Ann. Phys. 8, 325 (1959) ADSCrossRefGoogle Scholar
  19. 19.
    T. Holstein, Ann. Phys. 8, 343 (1959) ADSCrossRefGoogle Scholar
  20. 20.
    S. Ciuchi, F. de Pasquale, S. Fratini, D. Feinberg, Phys. Rev. B. 56, 4494 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    S. Fratini, S. Ciuchi, Phys. Rev. Lett. 91, 256403 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    G.D. Mahan, Many-particle physics (Plenum Press, New York, 2000), 3rd edn. Google Scholar
  23. 23.
    K.Z. Rushchanskii, N.A. Spaldin, M.Ležaić, Phys. Rev. B. 85, 104109 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996) ADSCrossRefGoogle Scholar
  25. 25.
    G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    V.S. Viswanath, G. Müller, The recursion method (Springer-Verlag, Berlin, 1994) Google Scholar
  27. 27.
    P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009) CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    N. Marzari, D. Vanderbilt, Phys. Rev. B. 56, 12847 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B. 65, 035109 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957) ADSCrossRefGoogle Scholar
  32. 32.
    D.A. Greenwood, Proc. Phys. Soc. 71, 585 (1958) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    E.N. Economou, Green’s function in quantum physics (Springer-Verlag, Berlin, 2006), 3rd edn. Google Scholar
  34. 34.
    I.G. Lang, Yu.A. Firsov, Zh. Eksp. Teor. Fiz. 43, 1843 (1962) [Sov. Phys. JETP 16, 1301 (1963)] Google Scholar
  35. 35.
    F. Giustino, Rev. Mod. Phys. 89, 015003 (2017) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S. Poncé, E.R. Margine, C. Verdi, F. Giustino, Comput. Phys. Commun. 209, 116 (2016) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ruofan Chen
    • 1
  • Ji-Chang Ren
    • 1
  • Km Rubi
    • 1
  • Ramanathan Mahendiran
    • 1
  • Jian-Sheng Wang
    • 1
  1. 1.Department of PhysicsNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations