Electrical and material properties of hydrothermally grown single crystal (111) UO2

  • Christina L. Dugan
  • George Glenn Peterson
  • Alyssa Mock
  • Christopher Young
  • J. Matthew Mann
  • Michael Nastasi
  • Mathias Schubert
  • Lu Wang
  • Wai-Ning Mei
  • Iori Tanabe
  • Peter A. Dowben
  • James Petrosky
Regular Article

Abstract

The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current–voltage I(V) and capacitance–voltage C(V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.

Keywords

Solid State and Materials 

References

  1. 1.
    R. Stone, Science 353, 15 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    A. Caruso, R.B. Billa, S. Balaz, J.I. Brand, P.A. Dowben, J. Phys.: Condens. Matter 16, L139 (2004) ADSGoogle Scholar
  3. 3.
    A. Caruso, P.A. Dowben, S. Balkir, N. Schemm, K. Osberg, R.W. Fairchild, O.B. Flores, S. Balaz, A.D. Harken, B.W. Robertson, J.I. Brand, Mater. Sci. Eng. B 135, 129 (2006) CrossRefGoogle Scholar
  4. 4.
    N. Hong, J. Mullins, K. Foreman, S. Adenwalla, J. Phys. D: Appl. Phys. 43, 275101 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    G. Peterson, Q. Su, Y. Wang, P.A. Dowben, M. Nastasi, Mater. Sci. Eng. B 202, 25 (2015) CrossRefGoogle Scholar
  6. 6.
    E. Echeverría, B. Dong, G. Peterson, J.P. Silva, E.R. Wilson, M.S. Driver, Y.S. Jun, G.D. Stucky, S. Knight, T. Hoffman, Z.K. Han, N. Shao, Y. Gao, W.N. Mei, M. Nastasi, P.A. Dowben, J.A. Kelber, J. Appl. Phys. 49, 355302 (2016) Google Scholar
  7. 7.
    H. Anderson, E. Fermi, L. Szilard, Phys. Rev. 56, 284 (1939) ADSCrossRefGoogle Scholar
  8. 8.
    T.T. Meek, B.V. Roedern, Vacuum 83, 226 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    B. von Roedern, T. Meek, M. Haire, in Symposium of the Society for the Advancement of Material and Process Engineering (SAMPE), Long Beach (National Renewable Energy Laboratory, Golden, CO, 2003) Google Scholar
  10. 10.
    C. Kruschwitz, S. Mukhopadhyay, D. Schwellenbach, T. Meek, B. Shaver, in Proceedings of the SPIE 9213; Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, San Diego (2014) Google Scholar
  11. 11.
    C. Young, J. Petrosky, J.M. Mann, E. Hunt, D. Turner, P.A. Dowben, J. Phys.: Condens. Matter 29, 035005-1 (2016) ADSGoogle Scholar
  12. 12.
    J. Katz, E. Rabinowitch, The chemistry of uranium (McGraw-Hill Book Company, New York, 1951) Google Scholar
  13. 13.
    L. Lynds, W. Young, J. Mohl, G. Libowitz, Nonstoichiometric compounds (American Chemical Society, Washington D.C., 1963) Google Scholar
  14. 14.
    D.J. Kim, J.H. Kim, K.S. Kim, J.H. Yang, S.K. Kim, Y.H. Koo, WJNST 5, 102 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    B. Dorado, G. Jomard, M. Freyss, M. Bertolus, Phys. Rev. B: Condens. Matter. 82, 035114-1 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    T. Kelly, J. Petrosky, D. Turner, J. McClory, J. Mann, J. Kolis, X. Zhang, P. Dowben, Phys. Status Solidi RRL 8, 283 (2014) CrossRefGoogle Scholar
  17. 17.
    G. Leinders, T. Cardinels, K. Binnemans, M. Verwerft, J. Nucl. Mater. 459, 135 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    J. Holz, F.K. Schulte, H. Wagner, Solid surface physics (Springer, Berlin, Heidelberg, 1979) Google Scholar
  19. 19.
    R.C. Chiechi, E.A. Weiss, M.D. Dickey, G.M. Whitesides, Angew. Chem. 120, 148 (2007) CrossRefGoogle Scholar
  20. 20.
    G. Kresse, J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 169 (1996) CrossRefGoogle Scholar
  21. 21.
    G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    G. Kresse, D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, J. Chem. Phys. 124, 1547091 (2006) CrossRefGoogle Scholar
  25. 25.
    S. Dudarev, G.A. Botton, S.Y. Savarasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    H. Monkhorst, J. Pack, Phys. Rev. B. 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E. Sanville, E. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28, 899 (2007) CrossRefGoogle Scholar
  28. 28.
    J. Heyd, G.S. Ernzerhob, J. Chem. Phys. 118, 8207 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    S. Clark, M. Segall, C. Pickard, P. Hasnip, M. Probert, K. Refson, M. Payne, Z. Kristallogr. 220, 567 (2005) Google Scholar
  30. 30.
    S.M. Sze, K.K. Ng, Physics of semiconductors devices, 3rd edn. (Wiley-Interscience, New York, 2007) Google Scholar
  31. 31.
    J. Schoenes, J. Appl. Sci. 49, 1463 (2008) ADSGoogle Scholar
  32. 32.
    E. Borchi, M. Bruzzi, S. Pirollo, S. Sciortino, Solid-State Electron. 42, 2093 (1998) ADSCrossRefGoogle Scholar
  33. 33.
    B.T. Willis, Acta Crystallogr. A 34, 88 (1978) ADSCrossRefGoogle Scholar
  34. 34.
    I.D. Parker, J. Appl. Phys. 75, 1656 (1994) ADSCrossRefGoogle Scholar
  35. 35.
    J.S. Morrell, M.J. Jackson, Uranium processing and properties (Springer, New York, 2013) Google Scholar
  36. 36.
    K. Gofryk, S. Du, C. Stanek, J. Lashley, X. Liu, R. Schulze, J. Smith, D. Safarik, D. Byler, K. McClellan, B. Uberuaga, B. Scott, D. Andersson, Nat. Commun. 5, 4551 (2014) CrossRefGoogle Scholar
  37. 37.
    A. Mock, R. Korlacki, C. Briley, D. Sekora, T. Hofmann, P. Wilson, A. Sinitskii, E. Schubert, M. Schubert, Appl. Phys. 108, 051905-1 (2016) ADSGoogle Scholar
  38. 38.
    W. Siekhaus, J. Crowhurst, IOP Conf. Ser.: Mater. Sci. Eng. 9, 1 (2010) CrossRefGoogle Scholar
  39. 39.
    J. Schoenes, J. Appl. Phys. 49, 1463 (1978) ADSCrossRefGoogle Scholar
  40. 40.
    H. Fujiwara, Spectroscopic ellispsometry: principles and applications (John Wiley & Sons, West Sussex, England, 2003) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Christina L. Dugan
    • 1
  • George Glenn Peterson
    • 2
  • Alyssa Mock
    • 3
  • Christopher Young
    • 1
  • J. Matthew Mann
    • 4
  • Michael Nastasi
    • 1
    • 5
  • Mathias Schubert
    • 3
  • Lu Wang
    • 6
    • 7
  • Wai-Ning Mei
    • 7
  • Iori Tanabe
    • 6
  • Peter A. Dowben
    • 8
  • James Petrosky
    • 1
  1. 1.Department of Engineering PhysicsAir Force Institute of TechnologyWright-Patterson Air Force BaseUSA
  2. 2.University of Nebraska, Walter Scott Engineering CenterLincolnUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Nebraska, Walter Scott Engineering CenterLincolnUSA
  4. 4.Air Force Research LaboratoryWright-Patterson Air Force BaseUSA
  5. 5.Nebraska Center for Energy Sciences Research, University of NebraskaLincolnUSA
  6. 6.CAS Key Lab of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of ChinaHefeiP.R. China
  7. 7.Department of PhysicsUniversity of Nebraska at OmahaOmahaUSA
  8. 8.Department of Physics and AstronomyUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations