Abstract
Network-based similarity measures have found wide applications in recommendation algorithms and made significant contributions for uncovering users’ potential interests. However, existing measures are generally biased in terms of popularity, that the popular objects tend to have more common neighbours with others and thus are considered more similar to others. Such popularity bias of similarity quantification will result in the biased recommendations, with either poor accuracy or poor diversity. Based on the bipartite network modelling of the user-object interactions, this paper firstly calculates the expected number of common neighbours of two objects with given popularities in random networks. A Balanced Common Neighbour similarity index is accordingly developed by removing the random-driven common neighbours, estimated as the expected number, from the total number. Recommendation experiments in three data sets show that balancing the popularity bias in a certain degree can significantly improve the recommendations’ accuracy and diversity simultaneously.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Goldberg, D. Nichols, B.M. Oki, D. Terry, Commun. ACM 35, 61 (1992)
P. Lops, M. De Gemmis, G. Semeraro, Recommender systems handbook (Springer, US, 2011)
L. Lv, M. Medo, C.H. Yeung, Y.C. Zhang, Z.K. Zhang, T. Zhou, Phys. Rep. 519, 1 (2012)
G. Linden, B. Smith, J. York, IEEE Internet Comput. 7, 76 (2003)
J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi et al., in Proceedings of the 4th ACM Conference on Recommender Systems (2010), pp. 293–296
F. Cacheda, V. Carneiro, D. Fernández, V. Formoso, ACM Trans. Web 5, 2 (2011)
K.H. Tso, L. Schmidt-Thieme, Data science and classification (Springer, Berlin/Heidelberg, 2006), pp. 271–278
M.J. Pazzani, D. Billsus, The adaptive web (Springer, Berlin/Heidelberg, 2007), pp. 325–341
C. Cattuto, V. Loreto, L. Pietronero, Proc. Natl. Acad. Sci. USA 104, 1461 (2007)
H.N. Kim, A.T. Ji, I. Ha, G.S. Jo, Electron. Commer. Res. Appl. 9, 73 (2010)
A. Zeng, A. Vidmer, M. Medo, Y.C. Zhang, EPL 105, 58002 (2014)
L. Hou, K. Liu, J. Liu, R. Zhang, Physica A 468, 415 (2017)
T. Zhou, J. Ren, M. Medo, Y.C. Zhang, Phys. Rev. E 76, 046115 (2007)
J.G. Liu, L. Hou, X. Pan, Q. Guo, T. Zhou, Sci. Rep. 6, 18653 (2016)
E.A. Leicht, P. Holme, M.E.J. Newman, Phys. Rev. E 73, 026120 (2006)
E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.L. Barabási, Science 297, 1551 (2002)
L.A. Adamic, E. Adar, Soc. Netw. 25, 211 (2003)
T. Zhou, L. Lü, Y.C. Zhang, Eur. Phys. J. B 71, 623 (2009)
Y.C. Zhang, M. Blattner, Y.K. Yu, Phys. Rev. Lett. 99, 154301 (2007)
A. Clauset, C. Moore, M.E.J. Newman, Nature 453, 98 (2008)
H. Steck, in Proceedings of the 5th ACM Conference on Recommender Systems (2011), pp. 125–132
S.M. McNee, J. Riedl, J.A. Konstan, in CHI’06 Extended Abstr. Hum. Factor Comput. Syst. (ACM, 2006), pp. 1097–1101
X. Zhu, H. Tian, P. Zhang, Z. Hu, T. Zhou, EPL 111, 48007 (2015)
J.G. Liu, T. Zhou, A. Guo, Phys. Rev. E 84, 037101 (2011)
F. Chung, L. Lu, Ann. Comb. 6, 125 (2002)
F. Chung, L. Lu, Proc. Natl. Acad. Sci. USA 99, 15879 (2002)
J.G. Liu, Z.L. Hu, Q. Guo, Eur. Phys. J. B 86, 478 (2013)
R. Guimerá, M. Sales-Pardo, L.A.N. Amaral, Phys. Rev. E 76, 036102 (2007)
A. Vespignani, Nat. Phys. 8, 32 (2012)
S. Fortunato, A. Flammini, F. Menczer, A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 12684 (2006)
A. Corniére, G. Taylor, RAND J. Econ. 45, 576 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hou, L., Pan, X. & Liu, K. Balancing the popularity bias of object similarities for personalised recommendation. Eur. Phys. J. B 91, 47 (2018). https://doi.org/10.1140/epjb/e2018-80374-8
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2018-80374-8