Sudden spreading of infections in an epidemic model with a finite seed fraction

Abstract

We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical processes on complex networks (Cambridge University Press, Cambridge, 2008)

  4. 4.

    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    ADS  Article  Google Scholar 

  6. 6.

    Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26, 521 (2002)

    ADS  Google Scholar 

  7. 7.

    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 115, 700 (1927)

    ADS  Article  Google Scholar 

  8. 8.

    R.M. Anderson, R.M. May, Infectious diseases of humans: dynamics and control (Oxford University Press, New York, 1992)

  9. 9.

    R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    J.C. Miller, A.C. Slim, E.M. Volz, J. R. Soc. Interface 9, 890 (2012)

    Article  Google Scholar 

  11. 11.

    J.P. Gleeson, Phys. Rev. Lett. 107, 068701 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    J. Lindquist, J. Ma, P. Van den Driessche, F.H. Willeboordse, J. Math. Biol. 62, 143 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    J.P. Gleeson, Phys. Rev. X 3, 021004 (2013)

    Google Scholar 

  14. 14.

    A.V. Goltsev, S.N. Dorogovtsev, J.G. Oliveira, J.F.F. Mendes, Phys. Rev. Lett. 109, 128702 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    G. Ódor, Phys. Rev. E 90, 032110 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    P. Moretti, M.A. Muñoz, Nat. Commun. 4 (2013)

  17. 17.

    G. Ódor, R. Dickman, G. Ódor, Sci. Rep. 5 (2015)

  18. 18.

    W. Cota, S.C. Ferreira, G. Ódor, Phys. Rev. E 93, 032322 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    P.S. Dodds, D.J. Watts, Phys. Rev. Lett. 92, 218701 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    P.S. Dodds, D.J. Watts, J. Theor. Biol. 232, 587 (2005)

    Article  Google Scholar 

  22. 22.

    D. Centola, V.M. Eguíluz, M.W. Macy, Physica A 374, 449 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    D. Centola, Science 329, 1194 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    P.L. Krapivsky, S. Redner, D. Volovik, J. Stat. Mech. Theory Exp. 2011, P12003 (2011)

    Article  Google Scholar 

  25. 25.

    M. Zheng, L. Lü, M. Zhao, Phys. Rev. E 88, 012818 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    E. Campbell, M. Salathé, Sci. Rep. 3 (2013)

  27. 27.

    S. Melnik, J.A. Ward, J.P. Gleeson, M.A. Porter, Chaos 23, 013124 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    T. Hasegawa, K. Nemoto, J. Stat. Mech. Theory Exp. 2014, P11024 (2014)

    Article  Google Scholar 

  29. 29.

    W. Wang, M. Tang, H.-F. Zhang, Y.-C. Lai, Phys. Rev. E 92, 012820 (2015)

    ADS  Article  Google Scholar 

  30. 30.

    D.J. O’Sullivan, G.J. O’Keeffe, P.G. Fennell, J.P. Gleeson, Front. Phys. 3, 71 (2015)

    Google Scholar 

  31. 31.

    J.C. Miller, J. Complex Netw. 4, 201 (2016)

    MathSciNet  Article  Google Scholar 

  32. 32.

    W. Wang, M. Tang, P. Shu, Z. Wang, New J. Phys. 18, 013029 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    D. Lee, W. Choi, J. Kertész, B. Kahng, Sci. Rep. 7, 5723 (2017)

    ADS  Article  Google Scholar 

  34. 34.

    W. Choi, D. Lee, B. Kahng, Phys. Rev. E 95, 022304 (2017)

    ADS  Article  Google Scholar 

  35. 35.

    H.-K. Janssen, M. Müller, O. Stenull, Phys. Rev. E 70, 026114 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    G. Bizhani, M. Paczuski, P. Grassberger, Phys. Rev. E 86, 011128 (2012)

    ADS  Article  Google Scholar 

  37. 37.

    K. Chung, Y. Baek, D. Kim, M. Ha, H. Jeong, Phys. Rev. E 89, 052811 (2014)

    ADS  Article  Google Scholar 

  38. 38.

    H.-K. Janssen, O. Stenull, Europhys. Lett. 113, 26005 (2016)

    ADS  Article  Google Scholar 

  39. 39.

    G.J. Baxter, S.N. Dorogovtsev, A.V. Goltsev, J.F. Mendes, Phys. Rev. E 83, 051134 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    J.C. Miller, PLoS ONE 9, e101421 (2014)

    ADS  Article  Google Scholar 

  41. 41.

    Z.-L. Hu, J.-G. Liu, G.-Y. Yang, Z.-M. Ren, Europhys. Lett. 106, 18002 (2014)

    ADS  Article  Google Scholar 

  42. 42.

    S. Ji, L. Lu, C.H. Yeung, Y. Hu, arXiv:1508.04294 (2015)

  43. 43.

    T. Hasegawa, K. Nemoto, Phys. Rev. E 93, 032324 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    T. Tomé, R.M. Ziff, Phys. Rev. E 82, 051921 (2010)

    ADS  Article  Google Scholar 

  45. 45.

    D.R. de Souza, T. Tomé, R.M. Ziff, J. Stat. Mech. Theory Exp. 2011, P03006 (2011)

    Article  Google Scholar 

  46. 46.

    D. Stauffer, A. Aharony, Introduction to percolation theory (Taylor and Francis, London, 1994)

  47. 47.

    T. Hasegawa, T. Nogawa, K. Nemoto, Europhys. Lett. 104, 16006 (2013)

    ADS  Article  Google Scholar 

  48. 48.

    T. Hasegawa, T. Nogawa, K. Nemoto, Discontin. Nonlinearity Complex. 3, 319 (2014)

    Article  Google Scholar 

  49. 49.

    W. Choi, D. Lee, B. Kahng, Phys. Rev. E 95, 062115 (2017)

    ADS  Article  Google Scholar 

  50. 50.

    L. Chen, F. Ghanbarnejad, W. Cai, P. Grassberger, Europhys. Lett. 104, 50001 (2013)

    ADS  Article  Google Scholar 

  51. 51.

    W. Cai, L. Chen, F. Ghanbarnejad, P. Grassberger, Nat. Phys. 11, 936 (2015)

    Article  Google Scholar 

  52. 52.

    L. Hébert-Dufresne, B.M. Althouse, Proc. Natl. Acad. Sci. USA 112, 10551 (2015)

    MathSciNet  Article  Google Scholar 

  53. 53.

    P. Grassberger, L. Chen, F. Ghanbarnejad, W. Cai, Phys. Rev. E 93, 042316 (2016)

    ADS  Article  Google Scholar 

  54. 54.

    N. Azimi-Tafreshi, Phys. Rev. E 93, 042303 (2016)

    ADS  Article  Google Scholar 

  55. 55.

    R. Juhász, G. Ódor, C. Castellano, M.A. Muñoz, Phys. Rev. E 85, 066125 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takehisa Hasegawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, T., Nemoto, K. Sudden spreading of infections in an epidemic model with a finite seed fraction. Eur. Phys. J. B 91, 58 (2018). https://doi.org/10.1140/epjb/e2018-80343-3

Download citation

Keywords

  • Statistical and Nonlinear Physics