Skip to main content
Log in

Conserved Manna model on Barabasi–Albert scale-free network

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, a conserved Manna model is constructed and studied on Barabasi–Albert scale-free network with degree exponent γ = 3. Numerically I show that the system undergoes an absorbing state phase transition when the particle density is varied. Such a phase transition is characterized by measuring several critical exponents associated with the critical behaviour of the model. It has been found that the critical exponents exhibit mean field values of directed percolation. At the critical point, the spreading exponents have also been estimated. They satisfy the usual scaling relations. The effect of various initial conditions has been investigated and the result found to be independent of initial conditions, contrary to the fact that critical behaviour of such model highly depends on initial conditions when studied on regular lattice. The study confirms that though the Manna model in the lower dimensions exhibits different critical behavior other than DP, in the scale-free network it exhibits similar mean field result of DP class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Jensen, Self-organized criticality (Cambridge University Press, Cambridge, 1998)

  2. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  Google Scholar 

  3. D. Dhar, Physica A 369, 29 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Vespignani, R. Dickman, M.A. Muñoz, S. Zapperi, Phys. Rev. E 62, 4564 (2000)

    Article  ADS  Google Scholar 

  5. F. Bagnoli, F. Cecconi, A. Flammini, A. Vespignani, Europhys. Lett. 63, 512 (2003)

    Article  ADS  Google Scholar 

  6. A. Vespignani, R. Dickman, M.A. Muñoz, S. Zapperi, Phys. Rev. Lett. 81, 5676 (1998)

    Article  ADS  Google Scholar 

  7. R. Dickman, A. Vespignani, S. Zapperi, Phys. Rev. E 57, 5095 (1998)

    Article  ADS  Google Scholar 

  8. J. Marro, R. Dickman, Nonequilibrium phase transitions in lattice models (Cambridge University Press, Cambridge, 1999)

  9. S. Lübeck, Int. J. Mod. Phys. B 18, 3977 (2004)

    Article  ADS  Google Scholar 

  10. W. Kinzel, Z. Phys. B 58, 229 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. M.A. Muñoz, R. Pastor-Satorras, Phys. Rev. Lett. 90, 204101 (2003)

    Article  ADS  Google Scholar 

  12. U. Basu, M. Basu, P.K. Mohanty, Eur. Phys. J. B 86, 236 (2013)

    Article  ADS  Google Scholar 

  13. M. Rossi, R.P. Satorras, A. Vespignani, Phys. Rev. Lett. 85, 1803 (2000)

    Article  ADS  Google Scholar 

  14. M. Basu, U. Basu, S. Bondyopadhyay, P.K. Mohanty, H. Hinrichsen, Phys. Rev. Lett. 109, 015702 (2012)

    Article  ADS  Google Scholar 

  15. S.B. Lee, Phys. Rev. Lett. 110, 159601 (2013)

    Article  ADS  Google Scholar 

  16. S.B. Lee, Phys. Rev. E 89, 062133 (2014)

    Article  ADS  Google Scholar 

  17. S.B. Lee, Phys. Rev. E 89, 060101 (2014)

    Article  ADS  Google Scholar 

  18. S. Kwon, J.M. Kim, Phys. Rev. E 91, 012149 (2015)

    Article  ADS  Google Scholar 

  19. S. Kwon, J.M. Kim, Phys. Rev. E 92, 062149 (2015)

    Article  ADS  Google Scholar 

  20. S. Kwon, J.M. Kim, Phys. Rev. E 94, 012113 (2016)

    Article  ADS  Google Scholar 

  21. H. Bhaumik, J.A. Ahmed, S.B. Santra, Phys. Rev. E 90, 062136 (2014)

    Article  ADS  Google Scholar 

  22. P. Grassberger, D. Dhar, P.K. Mohanty, Phys. Rev. E 94, 042314 (2016)

    Article  ADS  Google Scholar 

  23. R. Albert, H. Jeong, A.L. Barabási, Nature (London) 401, 130 (1999)

    Article  ADS  Google Scholar 

  24. L.A. Amaral, A. Scala, M. Barthelemy, H.E. Stanley, Proc. Natl. Acad. Sci. USA 97, 11149 (2000)

    Article  ADS  Google Scholar 

  25. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabási, Nature (London) 411, 41 (2000)

    Article  ADS  Google Scholar 

  26. A. Levina, J.M. Herrmann, T. Geisel, Nature 3, 857 (2007)

    Google Scholar 

  27. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  28. R. Cohen, D. ben Avraham, S. Havlin, Phys. Rev. E 66, 036113 (2002)

    Article  ADS  Google Scholar 

  29. J.-D. Bancal, R. Pastor-Satorras, Eur. Phys. J. B 76, 109 (2010)

    Article  ADS  Google Scholar 

  30. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.-L. Barabási, R. Albert, H. Jeong, Physica A 272, 173 (1999)

    Article  ADS  Google Scholar 

  32. S. Bondyopadhyay, Phys. Rev. E 88, 062125 (2013)

    Article  ADS  Google Scholar 

  33. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  34. I. Jensen, R. Dickman, Phys. Rev. E 48, 1710 (1993)

    Article  ADS  Google Scholar 

  35. S. Lubeck, R.D. Willmann, J. Phys. A: Math. Gen. 35, 10205 (2002)

    Article  ADS  Google Scholar 

  36. S. Lubeck, A. Hucht, J. Phys. A: Math. Gen. 35, 4853 (2002)

    Article  ADS  Google Scholar 

  37. S. Lübeck, P.C. Heger, Phys. Rev. Lett. 90, 230601 (2003)

    Article  Google Scholar 

  38. R. Cohen, S. Havlin, Complex networks (Cambridge University Press, Cambridge, 2010)

  39. S.S. Manna, J. Phys. A 24, L363 (1991)

    Article  ADS  Google Scholar 

  40. S. Lübeck, P.C. Heger, Phys. Rev. E 68, 056102 (2003)

    Article  ADS  Google Scholar 

  41. M.A. Muñoz, R. Dickman, A. Vespignani, S. Zapperi, Phys. Rev. E 59, 6175 (1999)

    Article  ADS  Google Scholar 

  42. K. Christensen, Z. Olami, Phys. Rev. E 48, 3361 (1993)

    Article  ADS  Google Scholar 

  43. E. Bonabeau, J. Phys. Soc. Jpn. 64, 327 (1995)

    Article  ADS  Google Scholar 

  44. K.-I. Goh, D.-S. Lee, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himangsu Bhaumik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaumik, H. Conserved Manna model on Barabasi–Albert scale-free network. Eur. Phys. J. B 91, 21 (2018). https://doi.org/10.1140/epjb/e2017-80602-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80602-9

Navigation