Skip to main content
Log in

Identifying an influential spreader from a single seed in complex networks via a message-passing approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pastor-Satorras, C. Castellano, P. ven Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015)

    Article  ADS  Google Scholar 

  2. M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, Nat. Phys. 6, 888 (2010)

    Article  Google Scholar 

  3. C. Castellano, R. Pastor-Satorras, Sci. Rep. 2, 371 (2012)

    Article  ADS  Google Scholar 

  4. J. Borge-Holthoefer, Y. Moreno, Phys. Rev. E 85, 026116 (2012)

    Article  ADS  Google Scholar 

  5. K. Klemm, M.Á. Serrano, V.M. Eguíluz, M. San Miguel, Sci. Rep. 2, 292 (2012)

    Article  Google Scholar 

  6. Y.Y. Liu, J.J. Slotine, A.-L. Barabási, Nature 473, 7346 (2011)

    Article  Google Scholar 

  7. J. Gao, Y.Y. Liu, R.M. D’Souza, A.-L. Barabási, Nat. Commun. 5, 5415 (2014)

    Article  Google Scholar 

  8. S. Pei, H.A. Makse, J. Stat. Mech. 12, 12002 (2013)

    Article  Google Scholar 

  9. F. Radicchi, C. Castellano, Phys. Rev. E 93, 062314 (2016)

    Article  ADS  Google Scholar 

  10. L. Lü, T. Zhou, Q.M. Zhan, H.E. Stanley, Nat. Commun. 7, 10168 (2016)

    Article  Google Scholar 

  11. R. Cohen, S. Havlin, D. Ben-Avraham, Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

  12. P. Holme, Europhys. Lett. 68, 908 (2004)

    Article  ADS  Google Scholar 

  13. Y. Chen, G. Paul, S. Havlin, F. Liljeros, H.E. Stanley, Phys. Rev. Lett. 101, 058701 (2008)

    Article  ADS  Google Scholar 

  14. N. Masuda, New J. Phys. 11, 123018 (2009)

    Article  ADS  Google Scholar 

  15. F. Altarelli, A. Braunstein, L. Dall’Asta, J.R. Wakeling, R. Zecchina, Phys. Rev. X 44, 021024 (2014)

    Google Scholar 

  16. F. Bauer, J.T. Lizier, Europhys. Lett. 99, 68007 (2012)

    Article  ADS  Google Scholar 

  17. S. Pei, L. Muchnik, J.S. Andrade Jr., Z. Zheng, H.A. Makse, Sci. Rep. 4, 5547 (2014)

    Article  ADS  Google Scholar 

  18. B. Min, F. Liljeros, H.A. Makse, PLoS ONE 10, e0136831 (2015)

    Article  Google Scholar 

  19. F. Morone, H.A. Makse, Nature 542, 65 (2015)

    Article  ADS  Google Scholar 

  20. F. Morone, B. Min, L. Bo, R. Mari, H.A. Makse, Sci. Rep. 6, 30062 (2016)

    Article  ADS  Google Scholar 

  21. F. Morone, K. Roth, B. Min, H.E. Stanley, H.A. Makse, Proc. Natl. Sci. Acad. USA 114, 3849 (2017)

    Article  Google Scholar 

  22. Y. Liu, M. Tang, T. Zhou, Y. Do, Physica A 452, 289 (2016)

    Article  ADS  Google Scholar 

  23. F.D. Malliaros, M.E.G. Rossi, M. Vazirgiannis, Sci. Rep. 6, 19307 (2016)

    Article  ADS  Google Scholar 

  24. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  25. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. Lett. 96, 040601 (2006)

    Article  ADS  Google Scholar 

  26. L.C. Freeman, Soc. Netw. 1, 215 (1979)

    Article  Google Scholar 

  27. S. Brin, L. Page, Comput. Netw. ISDN 30, 107 (1998)

    Article  Google Scholar 

  28. W.O. Kermack, A.G. McKendrick, Proc. R. Soc. Lond. A 115, 700 (1927)

    Article  ADS  Google Scholar 

  29. B. Karrer, M.E.J. Newman, L. Zdeborová, Phys. Rev. Lett. 113, 208702 (2014)

    Article  ADS  Google Scholar 

  30. A.Y. Lokhov, M. Mézard, H. Ohta, L. Zdeborová, Phys. Rev. E 90, 012801 (2014)

    Article  ADS  Google Scholar 

  31. A.Y. Lokhov, D. Saad, Proc. Natl. Acad. Sci. USA 114, E8138 (2017)

    Article  Google Scholar 

  32. A. Braunstein, L. Dall’Asta, G. Semerjian, L. Zdeborová, Proc. Natl. Acad. Sci. USA 113, 12368 (2016)

    Article  Google Scholar 

  33. P. Grassberger, Math. Biosci. 63, 157 (1983)

    Article  Google Scholar 

  34. J.L. Cardy, P. Grassberger, J. Phys. A 18, L267 (1985)

    Article  ADS  Google Scholar 

  35. M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  36. B. Karrer, M.E.J. Newman, Phys. Rev. E 82, 016101 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. A.Y. Lokhov, M. Mézard, L. Zdeborová, Phys. Rev. E 91, 012811 (2015)

    Article  ADS  Google Scholar 

  38. F. Radicchi, C. Castellano, Phys. Rev. E 93, 030302 (2016)

    Article  ADS  Google Scholar 

  39. F. Radicchi, C. Castellano, Phys. Rev. E 95, 012318 (2017)

    Article  ADS  Google Scholar 

  40. K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001)

    Article  Google Scholar 

  41. T. Martin, X. Zhang, M.E.J. Newman, Phys. Rev. E 90, 052808 (2014)

    Article  ADS  Google Scholar 

  42. M. Génois et al., Netw. Sci. 3, 326 (2015)

    Article  Google Scholar 

  43. L.E.C. Rocha, F. Liljeros, P. Holme, Proc. Natl. Acad. Sci. USA 107, 5706 (2010)

    Article  ADS  Google Scholar 

  44. A. Garas, F. Schweitzer, S. Havlin, New J. Phys. 14, 083030 (2012)

    Article  ADS  Google Scholar 

  45. C. Gao, D. Wei, Y. Hi, S. Mahadevan, Y. Deng, Physica A 392, 5490 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Barthélemy, Phys. Rep. 499, 1 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  47. D. Kempe, J. Kleinberg, É. Tardos, in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2003), pp. 137–146

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungjoon Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, B. Identifying an influential spreader from a single seed in complex networks via a message-passing approach. Eur. Phys. J. B 91, 18 (2018). https://doi.org/10.1140/epjb/e2017-80597-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80597-1

Keywords

Navigation