Quasi-superradiant soliton state of matter in quantum metamaterials

  • Hidehiro Asai
  • Shiro Kawabata
  • Sergey E. Savel’ev
  • Alexandre M. Zagoskin
Regular Article
  • 18 Downloads

Abstract

Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic field induces specific correlations in the system accompanied by a drastic increase of emitted radiation (superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon was subject to a vigorous experimental and theoretical research, there remain open question, in particular, concerning the possibility of a first order phase transition to the superradiant state from the vacuum state. In systems of natural and charge-based artificial atom this transition is prohibited by “no-go” theorems. Here we demonstrate numerically and confirm analytically a similar transition in a one-dimensional quantum metamaterial – a chain of artificial atoms (qubits) strongly interacting with classical electromagnetic fields in a transmission line. The system switches from vacuum state to the quasi-superradiant (QS) phase with one or several magnetic solitons and finite average occupation of qubit excited states along the transmission line. A quantum metamaterial in the QS phase circumvents the “no-go” restrictions by considerably decreasing its total energy relative to the vacuum state by exciting nonlinear electromagnetic solitons.

Keywords

Mesoscopic and Nanoscale Systems 

Supplementary material

References

  1. 1.
    A. Wallraff et al., Nature 431, 162 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    G. Günter et al., Nature 479, 376 (2011) CrossRefGoogle Scholar
  3. 3.
    T. Niemczyk et al., Nat. Phys. 6, 772 (2010) CrossRefGoogle Scholar
  4. 4.
    Y. Todorov, A.M. Andrews, R. Colombelli, S. DeLiberato, C. Ciuti, P. Klang, G. Strasser, C. Sirtori, Phys. Rev. Lett. 105, 196402 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    T. Schwartz, J.A. Hutchison, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 106, 196405 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    A.J. Hoffman, S.J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H.E. Türeci, A.A. Houck, Phys. Rev. Lett. 107, 053602 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    J. Casanova, G. Romero, I. Lizuain, J.J. García-Ripoll, E. Solano, Phys. Rev. Lett. 105, 263603 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    S. Ashhab, F. Nori, Phys. Rev. A 81, 042311 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    A. Ridolfo, S. Savasta, M.J. Hartmann, Phys. Rev. Lett. 110, 163601 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    R. Stassi, A. Ridolfo, O. Di Stefano, M.J. Hartmann, S. Savasta, Phys. Rev. Lett. 110, 243601 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    A.L. Rakhmanov, A.M. Zagoskin, S. Savel’ev, F. Nori, Phys. Rev. B 77, 144507 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Zagoskin, D. Felbacq, E. Rousseau, EPJ Quantum Technol. 3, 1 (2016) CrossRefGoogle Scholar
  13. 13.
    O. Astafiev, A.M. Zagoskin, A.A. Abdumalikov, Yu.A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, J.S. Tsai, Science 327, 840 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. André, G. Schön, U. Hübner, H.-G. Meyer, E. Il’ichev, A.V. Ustinov, Nat. Commun. 5, 5146 (2014) CrossRefGoogle Scholar
  15. 15.
    D.S. Shapiro, P. Macha, A.N. Rubtsov, A.V. Ustinov, Photonics 2, 449 (2015) CrossRefGoogle Scholar
  16. 16.
    H. Asai, S. Savel’ev, S. Kawabata, A.M. Zagoskin, Phys. Rev. B 91, 134513 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    Z. Ivic, N. Lazarides, G.P. Tsironis, arXiv:1509.07662 (2015)
  18. 18.
    J.Q. Quach, C.H. Su, A.M. Martin, A.D. Greentree, L.C.L. Hollenberg, Opt. Express 19, 11018 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    P.K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y.V. Rostovtsev, X. Zhang, Phys. Rev. Lett. 116, 165502 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    R.H. Dicke, Phys. Rev. 93, 99 (1954) ADSCrossRefGoogle Scholar
  21. 21.
    K. Hepp, E.H. Lieb, Ann. Phys. (New York) 76, 360 (1973) ADSCrossRefGoogle Scholar
  22. 22.
    K. Rzaźewski, K. Wódkiewicz, W. Źacowicz, Phys. Rev. Lett. 35, 432 (1975) ADSCrossRefGoogle Scholar
  23. 23.
    K. Rzaźewski, K. Wódkiewicz, Phys. Rev. Lett. 96, 089301 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Knight, Y. Aharonov, G.T.C. Hsieh, Phys. Rev. A 17, 1454 (1978) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    O. Viehmann, J. von Delft, F. Marquardt, Phys. Rev. Lett. 107, 113602 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    P. Nataf, C. Ciuti, Nat. Commun. 1, 72 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982) ADSCrossRefGoogle Scholar
  28. 28.
    T. Brandes, Phys. Rep. 408, 315 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    F. Dimer, B. Estienne, A.S. Parkins, H.J. Carmichael, Phys. Rev. A 75, 013804 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature (London) 464, 1301 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J. Keeling, M.J. Bhaseen, B.D. Simons, Phys. Rev. Lett. 105, 043001 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    J. Keeling, M.J. Bhaseen, B.D. Simons, Phys. Rev. Lett. 112, 143002 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    G. Vacanti, S. Pugnetti, N. Didier, M. Paternostro, G.M. Palma, R. Fazio, V. Vedral, Phys. Rev. Lett. 108, 093603 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    G.R. Berdiyorov, S. Savel’ev, M.V. Milošević, F. Kusmartsev, F.M. Peeters, unpublished Google Scholar
  35. 35.
    N.F. Pedersen, A.V. Ustinov, Supercond. Sci. Technol. 8, 389 (1995) ADSCrossRefGoogle Scholar
  36. 36.
    P. Caputo, M. Darula, A.V. Ustinov, H. Kohlstedt, J. Appl. Phys. 81, 309 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    D.I. Blokhintsev, in Quantum mechanics (Springer, Netherlands, 1964), Chap. 8 Google Scholar
  38. 38.
    A.M. Zagoskin, in Quantum engineering (Cambridge University Press, UK, 2011), Chap. 2 Google Scholar
  39. 39.
    Z. Zheng, B. Hu, G. Hu, Phys. Rev. B 58, 5453 (1998) ADSCrossRefGoogle Scholar
  40. 40.
    M. Tinkham, Introduction to superconductivity (Dover Publication, Inc., New York, 1996) Google Scholar
  41. 41.
    D. Cole et al., Nat. Mater. 5, 305 (2006) ADSCrossRefGoogle Scholar
  42. 42.
    V. Novosad, K.Y. Guslienko, H. Shima, Y. Otani, S.G. Kim, K. Fukamichi, N. Kikuchi, O. Kitakami, Y. Shimada, Phys. Rev. B 65, 060402(R) (2002) ADSCrossRefGoogle Scholar
  43. 43.
    S.E. Savel’ev, F. Marchesoni, A.M. Bratkovsky, Eur. Phys. J. B 86, 501 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    M. Bamba, K. Inomata, Y. Nakamura, Phys. Rev. Lett. 117, 173601 (2016) ADSCrossRefGoogle Scholar
  45. 45.
    F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba, Nat. Phys. 13, 44 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hidehiro Asai
    • 1
    • 2
  • Shiro Kawabata
    • 1
  • Sergey E. Savel’ev
    • 2
  • Alexandre M. Zagoskin
    • 2
    • 3
  1. 1.Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Department of PhysicsLoughborough UniversityLeicestershireUK
  3. 3.Theoretical Physics and Quantum Technologies Department, Moscow Institute for Steel and AlloysMoscowRussia

Personalised recommendations