Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes

  • Liujun Xu
  • Chaoran Jiang
  • Jin Shang
  • Ruizhe Wang
  • Jiping Huang
Regular Article
  • 23 Downloads

Abstract

Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 841 (1987) CrossRefGoogle Scholar
  2. 2.
    M.M. Sigalas, E.N. Economou, J. Sound Vibr. 158, 382 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    M. Maldovan, Phys. Rev. Lett. 110, 025902 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    G.Q. Gu, K.W. Yu, J. Phys. D: Appl. Phys. 30, 1523 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    C.Z. Fan, Y. Gao, J.P. Huang, Appl. Phys. Lett. 92, 251907 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    T. Chen, C.-N. Weng, J.-S. Chen, Appl. Phys. Lett. 93, 114103 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    S. Narayana, Y. Sato, Phys. Rev. Lett. 108, 214303 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    S. Guenneau, C. Amra, D. Veynante, Opt. Express 20, 8207 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    R. Schittny, M. Kadic, S. Guenneau, M. Wegener, Phys. Rev. Lett. 110, 195901 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    T.C. Han, T. Yuan, B.W. Li, C.W. Qiu, Sci. Rep. 3, 1593 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    H.Y. Xu, X.H. Shi, F. Gao, H.D. Sun, B.L. Zhang, Phys. Rev. Lett. 112, 054301 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    T.C. Han, X. Bai, D.L. Gao, J.T.L. Thong, B.W. Li, C.W. Qiu, Phys. Rev. Lett. 112, 054302 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    Y.G. Ma, Y.C. Liu, M. Raza, Y.D. Wang, S.L. He, Phys. Rev. Lett. 113, 205501 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    T.C. Han, X. Bai, J.T.L. Thong, B.W. Li, C.W. Qiu, Adv. Mater. 26, 1731 (2014) CrossRefGoogle Scholar
  15. 15.
    Y. Li, X.Y. Shen, Z.H. Wu, J.Y. Huang, Y.X. Chen, Y.S. Ni, J.P. Huang, Phys. Rev. Lett. 115, 195503 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    X.Y. Shen, Y. Li, C.R. Jiang, J.P. Huang, Phys. Rev. Lett. 117, 055501 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    X. He, L.Z. Wu, Phys. Rev. E 88, 033201 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    U. Leonhardt, Science 312, 1777 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    X. He, L.Z. Wu, Appl. Phys. Lett. 105, 221904 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    N.Q. Zhu, X.Y. Shen, J.P. Huang, AIP Adv. 5, 053401 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    T.Z. Yang, X. Bai, D.L. Gao, L.Z. Wu, B.W. Li, J.T.L. Thong, C.W. Qiu, Adv. Mater. 27, 7752 (2015) CrossRefGoogle Scholar
  23. 23.
    T.Z. Yang, Y.S. Su, W.K. Xu, X.D. Yang, Appl. Phys. Lett. 109, 121905 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    Q.W. Hou, X.P. Zhao, T. Meng, C.L. Liu, Appl. Phys. Lett. 109, 103506 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    M. Peyrar, EPL 76, 49 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    N.B. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B.W. Li, Rev. Mod. Phys. 84, 1045 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    P.G. Klemens, High Temp.-High Press. 23, 241 (1991) Google Scholar
  29. 29.
    K.W. Schlichting, N.P. Padture, P.G. Klemens, J. Mater. Sci. 36, 3003 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    P.G. Klemens, M. Gell, Mater. Sci. Eng. A 245, 143 (1998) CrossRefGoogle Scholar
  31. 31.
    L. Braginsky, V. Shklover, G. Witz, H.-P. Bossmann, Phys. Rev. B 75, 094301 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    L. Braginsky, V. Shklover, Phys. Rev. B 78, 224205 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Huang, K.W. Yu, Phys. Rep. 431, 87 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    L. Dong, J.P. Huang, K.W. Yu, G.Q. Gu, Eur. Phys. J. B 48, 439 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    Y.Y. Li, N.B. Li, B.W. Li, Eur. Phys. J. B 182, 182 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    L. Gao, L.P. Gu, Z.Y. Li, Phys. Rev. E 68, 066601 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Liujun Xu
    • 1
  • Chaoran Jiang
    • 1
  • Jin Shang
    • 1
  • Ruizhe Wang
    • 1
  • Jiping Huang
    • 1
    • 2
  1. 1.Department of PhysicsState Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan UniversityShanghaiP.R. China
  2. 2.Collaborative Innovation Center of Advanced MicrostructuresNanjingP.R. China

Personalised recommendations