Universal and shape dependent features of surface superconductivity

  • Michele Correggi
  • Bharathiganesh Devanarayanan
  • Nicolas Rougerie
Regular Article
  • 23 Downloads

Abstract

We analyze the response of a type II superconducting wire to an external magnetic field parallel to it in the framework of Ginzburg–Landau theory. We focus on the surface superconductivity regime of applied field between the second and third critical values, where the superconducting state survives only close to the sample’s boundary. Our first finding is that, in first approximation, the shape of the boundary plays no role in determining the density of superconducting electrons. A second order term is however isolated, directly proportional to the mean curvature of the boundary. This demonstrates that points of higher boundary curvature (counted inwards) attract superconducting electrons.

Keywords

Solid State and Materials 

References

  1. 1.
    P.-G. de Gennes, Superconductivity of metals and alloys (Westview Press, Boulder, Colorado, 1966) Google Scholar
  2. 2.
    A. Leggett, Quantum liquids (Oxford University Press, Oxford, UK, 2006) Google Scholar
  3. 3.
    D.R. Tilley, J. Tilley, Superfluidity and superconductivity (Institute of Physics Publishing, Bristol and Philadelphia, 1990) Google Scholar
  4. 4.
    M. Tinkham, Introduction to superconductivity (McGraw-Hill, New York, 1975) Google Scholar
  5. 5.
    A. Müller, M.V. Milošević, S.E.C. Dale, M.A. Engbarth, S.J. Bending, Phys. Rev. Lett. 109, 197003 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    I. Lukyanchuk, V.M. Vinokur, A. Rydh, R. Xie, M.V. Milošvić, U. Welp, M. Zach, Z.L. Xiao, G.W. Crabtree, S.J. Bending, F.M. Peeters, W.K. Kwok, Nat. Phys. 11, 21 (2015) CrossRefGoogle Scholar
  7. 7.
    D. Saint-James, P. de Gennes, Phys. Lett. 7, 306 (1963) ADSCrossRefGoogle Scholar
  8. 8.
    S. Casalbuoni, E. Knabbe, J. Ktzler, L. Lilje, L. von Sawilski, P. Schmser, B. Steffen, Nucl. Instrum. Methods Phys. Res. A 538, 45 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    V.V. Moshchakov, L. Gielen, C. Strunk, R. Jonckheere et al., Nature 373, 319 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Ning, C. Song, Z. Guan, X. Ma, X. Chen, J. Jia, Q. Xue, Europhys. Lett. 85, 27004 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    R.W. Rollins, J. Silcox, Phys. Rev. 155, 404 (1967) ADSCrossRefGoogle Scholar
  12. 12.
    A. Rydh, U. Welp, J.M. Hiller, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, K.H.P. Kim, K.H. Kim, C.U. Jung, H.-S. Lee, B. Kang, S.-I. Lee, Phys. Rev. B 68, 172502 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    M. Strongin, A. Paskin, D.G. Schweitzer, O.F. Kammerer, P.P. Craig, Phys. Rev. Lett. 12, 442 (1964) ADSCrossRefGoogle Scholar
  14. 14.
    M.I. Tsindlekht, V.M. Genkin, G.I. Leviev, N.Y. Shitsevalova, J. Phys.: Condens. Matter 22, 095701 (2010) ADSGoogle Scholar
  15. 15.
    M.I. Tsindlekht, G.I. Leviev, V.M. Genkin, I. Felner, P. Mikheenko, J.S. Abell, Phys. Rev. B 74, 132506 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    V.M. Fomin, J.T. Devreese, V.V. Moshchalkov, Europhys. Lett. 42, 553 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    V.M. Fomin, V.R. Misko, J.T. Devreese, V.V. Moshchalkov, Phys. Rev. B 58, 11703 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    H.T. Jadallah, J. Rubinstein, P. Sternberg, Phys. Rev. Lett. 82, 2935 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    V.A. Schweigert, F.M. Peeters, Phys. Rev. B 57, 13817 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    V.A. Schweigert, F.M. Peeters, Phys. Rev. B 60, 3084 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    V. Bonnaillie-Noël, M. Dauge, Ann. Henri Poincaré 7, 899 (2006) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    V. Bonnaillie-Noël, S. Fournais, Rev. Math. Phys. 19, 607 (2007) MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Fournais, B. Helffer, in Progress in nonlinear differential equations and their applications (Birkhäuser Boston, Inc., Boston, MA, 2010), Vol. 77 Google Scholar
  24. 24.
    A. Bernoff, P. Sternberg, J. Math. Phys. 39, 1275 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    B. Helffer, A. Morame, Ann. Ec. Norm. Sup. 37, 105 (2004) CrossRefGoogle Scholar
  26. 26.
    M. Correggi, N. Rougerie, Commun. Math. Phys. 332, 1297 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    M. Correggi, N. Rougerie, Arch. Ration. Mech. Anal. 219, 553 (2016) MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Correggi, N. Rougerie, Lett. Math. Phys. 106, 445 (2016) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Almog, Rev. Math. Phys. 16, 961 (2004) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Almog, B. Helffer, SIAM J. Math. Anal. 38, 1715 (2006) CrossRefGoogle Scholar
  31. 31.
    S. Fournais, B. Helffer, Calc. Var. Partial Diff. Eq. 24, 341 (2005) CrossRefGoogle Scholar
  32. 32.
    S. Fournais, B. Helffer, Commun. Math. Phys. 266, 153 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    S. Fournais, B. Helffer, M. Persson, J. Spectr. Theory 1, 273 (2011) MathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Fournais, A. Kachmar, Adv. Math. 226, 1213 (2011) MathSciNetCrossRefGoogle Scholar
  35. 35.
    L. Lu, X. Pan, Physica D 127, 73 (1999) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    X.-B. Pan, Commun. Math. Phys. 228, 327 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    M. Correggi, E.L. Giacomelli, Rev. Math. Phys. 29, 1750005 (2017) MathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Correggi, E.L. Giacomelli, in preparation Google Scholar
  39. 39.
    L. Gork’ov, Soviet Phys. JETP 9, 1364 (1959) MathSciNetGoogle Scholar
  40. 40.
    R.L. Frank, C. Hainzl, R. Seiringer, J.P. Solovej, J. Am. Math. Soc. 25, 667 (2012) CrossRefGoogle Scholar
  41. 41.
    R.L. Frank, C. Hainzl, R. Seiringer, J.P. Solovej, Commun. Math. Phys. 342, 189 (2016) ADSCrossRefGoogle Scholar
  42. 42.
    S. Alama, L. Bronsard, B. Galvão Sousa, SIAM J. Math. Anal. 42, 97 (2010) MathSciNetCrossRefGoogle Scholar
  43. 43.
    X. Antoine, R. Duboscq, http://gpelab.math.cnrs.fr/
  44. 44.
    X. Antoine, R. Duboscq, Comput. Phys. Commun. 185, 2969 (2014) ADSCrossRefGoogle Scholar
  45. 45.
    X. Antoine, R. Duboscq, Comput. Phys. Commun. 193, 95 (2015) ADSCrossRefGoogle Scholar
  46. 46.
    V. Bonnaillie-Noël, Numerical estimates of characteristic parameters Θ0 and ϕ (0) for superconductivity, preprint 08-14 Google Scholar
  47. 47.
    S. Fournais, A. Kachmar, M. Persson, J. Math. Pures Appl. 99, 343 (2013) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Michele Correggi
    • 1
  • Bharathiganesh Devanarayanan
    • 2
  • Nicolas Rougerie
    • 3
  1. 1.Dipartimento di Matematica, “Sapienza” Università di RomaRomeItaly
  2. 2.Department of Physics and AstronomyNational Institute of Technology RourkelaRourkelaOdishaIndia
  3. 3.Université Grenoble-Alpes & CNRS, LPMMC (UMR 5493)GrenobleFrance

Personalised recommendations