Synchronization of organ pipes

Regular Article
  • 13 Downloads

Abstract

We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Bader, Nonlinearities and synchronization in musical acoustics and music psychology (Springer, Berlin, 2013) Google Scholar
  2. 2.
    B. Fabre, A. Hirschberg, Acustica 86, 599 (2000) Google Scholar
  3. 3.
    V. Flunkert, I. Fischer, E. Schöll, Philos. Trans. R. Soc. A 371, 20120465 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Howe, in Theory of vortex sound (Cambridge University Press, Cambridge, 2003), Vol. 33 Google Scholar
  5. 5.
    A. Pikovsky, M. Rosenblum, J. Kurths, in Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001), Vol. 12 Google Scholar
  6. 6.
    M. Abel, S. Bergweiler, R. Gerhard-Multhaupt, J. Acoust. Soc. Am. 119, 2467 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    M. Abel, K. Ahnert, S. Bergweiler, Phys. Rev. Lett. 103, 114301 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J. Fischer, Nichtlineare Kopplungsmechanismen akustischer Oszillatoren am Beispiel der Synchronisation von Orgelpfeifen, Ph.D. thesis, Universität Potsdam, 2014 Google Scholar
  9. 9.
    J. Fischer, J. Acoust. Soc. Am. 140, 2344 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    N.H. Fletcher, J. Acoust. Soc. Am. 64, 1566 (1978) ADSCrossRefGoogle Scholar
  11. 11.
    J.W.S. Rayleigh, Philos. Mag. XIII, 340 (1882) CrossRefGoogle Scholar
  12. 12.
    D. Stanzial, D. Bonsi, D. Gonzales, Nonlinear modelling of the Mitnahme-Effekt in coupled organ pipes, in International Symposium on Musical Acoustics (ISMA), Perugia, Italy (2001), p. 333 Google Scholar
  13. 13.
    S. Bergweiler, Körperoszillation und Schallabstrahlung akustischer Wellenleiter unter Berücksichtigung von Wandungseinflüssen und Kopplungseffekten: Verändern Metalllegierung und Wandungsprofil des Rohrresonators den Klang der labialen Orgelpfeife? Ph.D. thesis, Universität Potsdam, 2006 Google Scholar
  14. 14.
    V. Semenov, A. Feoktistov, T. Vadivasova, E. Schöll, A. Zakharova, Chaos 25, 033111 (2015) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Wirkus, R. Rand, Nonlinear Dyn. 30, 205 (2002) CrossRefGoogle Scholar
  16. 16.
    R. Adler, Proc. IEEE 61, 1380 (1973) CrossRefGoogle Scholar
  17. 17.
    O. Föllinger, Nichtlineare Regelungen 2: Harmonische Balance, Popow- und Kreiskriterium, Hyperstabilität, Synthese im Zustandsraum: mit 18 Übungsaufgaben mit Lösungen (De Gruyter, Berlin, 1993) Google Scholar
  18. 18.
    H. Gholizade-Narm, A. Azemi, M. Khademi, Chin. Phys. B 22, 070502 (2013) CrossRefGoogle Scholar
  19. 19.
    S. Stein, S. Luther, U. Parlitz, New J. Phys. 19, 063040 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Eur. Phys. J. B 84, 307 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Philos. Trans. R. Soc. A 371, 20120466 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Chaos 24, 043117 (2014) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany
  2. 2.Department of Physics and AstronomyPotsdam UniversityPotsdamGermany

Personalised recommendations