Skip to main content

Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

Abstract

Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment – employed to derive quantum-kinetic equations – in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime – typical of many state-of-the-art quantum devices – their impact is strongly reduced.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)

    Article  Google Scholar 

  2. 2.

    A. Cho, Molecular beam epitaxy, key papers in applied physics (Springer-Verlag, New York, 1994)

  3. 3.

    D. Bimberg, M. Grundmann, N. Ledentsov, Quantum dot heterostructures (Wiley, New York, 1999)

  4. 4.

    T. Ihn, Semiconductor nanostructures: quantum states and electronic transport (OUP, Oxford, 2010)

  5. 5.

    F. Capasso, Physics of quantum electron devices, Springer series in electronics and photonics (Springer London Limited, London, 2011)

  6. 6.

    G. Bastard, Wave mechanics applied to semiconductor heterostructures, Monographies de physique (Les Éditions de Physique, Les Ulis, 1988)

  7. 7.

    C. Jacoboni, P. Lugli, The Monte Carlo method for semiconductor device simulation (Springer, Wien, 1989)

  8. 8.

    C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, Nanotechnology 4, 49 (1993)

    ADS  Article  Google Scholar 

  9. 9.

    A. Di Carlo, P. Vogl, W. Pötz, Phys. Rev. B 50, 8358 (1994)

    ADS  Article  Google Scholar 

  10. 10.

    W. Quade, E. Schöll, F. Rossi, C. Jacoboni, Phys. Rev. B 50, 7398 (1994)

    ADS  Article  Google Scholar 

  11. 11.

    S. Savasta, R. Girlanda, Phys. Rev. Lett. 77, 4736 (1996)

    ADS  Article  Google Scholar 

  12. 12.

    V.M. Axt, S. Mukamel, Rev. Mod. Phys. 70, 145 (1998)

    ADS  Article  Google Scholar 

  13. 13.

    F. Rossi, A. Di Carlo, P. Lugli, Phys. Rev. Lett. 80, 3348 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    M.V. Fischetti, Phys. Rev. B 59, 4901 (1999)

    ADS  Article  Google Scholar 

  15. 15.

    S. Datta, Superlattice. Microst. 28, 253 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    F. Rossi, T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)

    ADS  Article  Google Scholar 

  17. 17.

    R.C. Iotti, F. Rossi, Rep. Prog. Phys. 68, 2533 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    H. Haug, A. Jauho, Quantum kinetics in transport and optics of semiconductors (Springer, Berlin, 2007)

  19. 19.

    S. Datta, Quantum transport: atom to transistor (Cambridge University Press, New York, 2005)

  20. 20.

    H. Haug, S. Koch, Quantum theory of the optical and electronic properties of semiconductors (World Scientific, Singapore, 2004)

  21. 21.

    F. Rossi, Theory of semiconductor quantum devices: microscopic modeling and simulation strategies (Springer, Heidelberg, 2011)

  22. 22.

    F. Buot, Nonequilibrium quantum transport physics in nanosystems: foundation of computational nonequilibrium physics in nanoscience and nanotechnology (World Scientific, Singapore, 2009)

  23. 23.

    R.C. Iotti, E. Ciancio, F. Rossi, Phys. Rev. B 72, 125347 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    R. Rosati, F. Dolcini, R.C. Iotti, F. Rossi, Phys. Rev. B 88, 035401 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    R.C. Iotti, F. Dolcini, F. Rossi, Phys. Rev. B 96, 115420 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    H. Spohn, Rev. Mod. Phys. 52, 569 (1980)

    ADS  Article  Google Scholar 

  27. 27.

    E. Davies, Quantum theory of open systems (Academic Press, London, 1976)

  28. 28.

    D. Taj, R.C. Iotti, F. Rossi, Eur. Phys. J. B 72, 305 (2009)

    ADS  Article  Google Scholar 

  29. 29.

    F. Dolcini, R.C. Iotti, F. Rossi, Phys. Rev. B 88, 115421 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    R. Rosati, R.C. Iotti, F. Dolcini, F. Rossi, Phys. Rev. B 90, 125140 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    R. Rosati, F. Rossi, Phys. Rev. B 89, 205415 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    R. Rosati, F. Dolcini, F. Rossi, Phys. Rev. B 92, 235423 (2015)

    ADS  Article  Google Scholar 

  33. 33.

    R. Rosati, D.E. Reiter, T. Kuhn, Phys. Rev. B 95, 165302 (2017)

    ADS  Article  Google Scholar 

  34. 34.

    M. Bonitz, Quantum kinetic theory, Teubner-Texte zur Physik (Teubner, Leipzig, 1998)

  35. 35.

    D.B. Tran Thoai, H. Haug, Phys. Rev. B 47, 3574 (1993)

    ADS  Article  Google Scholar 

  36. 36.

    J. Schilp, T. Kuhn, G. Mahler, Phys. Rev. B 50, 5435 (1994)

    ADS  Article  Google Scholar 

  37. 37.

    C. Fürst, A. Leitenstorfer, A. Laubereau, R. Zimmermann, Phys. Rev. Lett. 78, 3733 (1997)

    ADS  Article  Google Scholar 

  38. 38.

    L. Bányai, Q.T. Vu, B. Mieck, H. Haug, Phys. Rev. Lett. 81, 882 (1998)

    ADS  Article  Google Scholar 

  39. 39.

    P. Gartner, L. Bányai, H. Haug, Phys. Rev. B 60, 14234 (1999)

    ADS  Article  Google Scholar 

  40. 40.

    Q.T. Vu, H. Haug, W.A. Hügel, S. Chatterjee, M. Wegener, Phys. Rev. Lett. 85, 3508 (2000)

    ADS  Article  Google Scholar 

  41. 41.

    K. Hannewald, S. Glutsch, F. Bechstedt, Phys. Rev. Lett. 86, 2451 (2001)

    ADS  Article  Google Scholar 

  42. 42.

    O.M. Schmitt, D.B.T. Thoai, L. Bányai, P. Gartner, H. Haug, Phys. Rev. Lett. 86, 3839 (2001)

    ADS  Article  Google Scholar 

  43. 43.

    V.M. Axt, B. Haase, U. Neukirch, Phys. Rev. Lett. 86, 4620 (2001)

    ADS  Article  Google Scholar 

  44. 44.

    M. Betz, G. Göger, A. Laubereau, P. Gartner, L. Bányai, H. Haug, K. Ortner, C.R. Becker, A. Leitenstorfer, Phys. Rev. Lett. 86, 4684 (2001)

    ADS  Article  Google Scholar 

  45. 45.

    B. Mieck, H. Haug, Phys. Rev. B 66, 075111 (2002)

    ADS  Article  Google Scholar 

  46. 46.

    T. Wolterink, V.M. Axt, T. Kuhn, Phys. Rev. B 67, 115311 (2003)

    ADS  Article  Google Scholar 

  47. 47.

    M. Herbst, M. Glanemann, V.M. Axt, T. Kuhn, Phys. Rev. B 67, 195305 (2003)

    ADS  Article  Google Scholar 

  48. 48.

    J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phys. Rev. Lett. 91, 127401 (2003)

    ADS  Article  Google Scholar 

  49. 49.

    J. Seebeck, T.R. Nielsen, P. Gartner, F. Jahnke, Phys. Rev. B 71, 125327 (2005)

    ADS  Article  Google Scholar 

  50. 50.

    S. Butscher, J. Förstner, I. Waldmüller, A. Knorr, Phys. Rev. B 72, 045314 (2005)

    ADS  Article  Google Scholar 

  51. 51.

    M. Glanemann, V.M. Axt, T. Kuhn, Phys. Rev. B 72, 045354 (2005)

    ADS  Article  Google Scholar 

  52. 52.

    K.M. Indlekofer, J. Knoch, J. Appenzeller, Phys. Rev. B 72, 125308 (2005)

    ADS  Article  Google Scholar 

  53. 53.

    A. Krügel, V.M. Axt, T. Kuhn, Phys. Rev. B 73, 035302 (2006)

    ADS  Article  Google Scholar 

  54. 54.

    P. Gartner, J. Seebeck, F. Jahnke, Phys. Rev. B 73, 115307 (2006)

    ADS  Article  Google Scholar 

  55. 55.

    Q.T. Vu, H. Haug, S.W. Koch, Phys. Rev. B 73, 205317 (2006)

    ADS  Article  Google Scholar 

  56. 56.

    M. Nedjalkov, D. Vasileska, D.K. Ferry, C. Jacoboni, C. Ringhofer, I. Dimov, V. Palankovski, Phys. Rev. B 74, 035311 (2006)

    ADS  Article  Google Scholar 

  57. 57.

    J. Zhou, J.L. Cheng, M.W. Wu, Phys. Rev. B 75, 045305 (2007)

    ADS  Article  Google Scholar 

  58. 58.

    I.A. Shelykh, R. Johne, D.D. Solnyshkov, A.V. Kavokin, N.A. Gippius, G. Malpuech, Phys. Rev. B 76, 155308 (2007)

    ADS  Article  Google Scholar 

  59. 59.

    P. Zhang, M.W. Wu, Phys. Rev. B 76, 193312 (2007)

    ADS  Article  Google Scholar 

  60. 60.

    E. Rozbicki, P. Machnikowski, Phys. Rev. Lett. 100, 027401 (2008)

    ADS  Article  Google Scholar 

  61. 61.

    A. Grodecka-Grad, J. Förstner, Phys. Rev. B 81, 115305 (2010)

    ADS  Article  Google Scholar 

  62. 62.

    U. Aeberhard, Phys. Rev. B 84, 035454 (2011)

    ADS  Article  Google Scholar 

  63. 63.

    J.M. Daniels, T. Papenkort, D.E. Reiter, T. Kuhn, V.M. Axt, Phys. Rev. B 84, 165310 (2011)

    ADS  Article  Google Scholar 

  64. 64.

    C. Thurn, V.M. Axt, Phys. Rev. B 85, 165203 (2012)

    ADS  Article  Google Scholar 

  65. 65.

    T. Papenkort, V.M. Axt, T. Kuhn, Phys. Rev. B 85, 235317 (2012)

    ADS  Article  Google Scholar 

  66. 66.

    H. Haug, T.D. Doan, D.B. Tran Thoai, Phys. Rev. B 89, 155302 (2014)

    ADS  Article  Google Scholar 

  67. 67.

    M. Cygorek, V.M. Axt, Phys. Rev. B 90, 035206 (2014)

    ADS  Article  Google Scholar 

  68. 68.

    T. Papenkort, V.M. Axt, T. Kuhn, Phys. Rev. Lett. 118, 097401 (2017)

    ADS  Article  Google Scholar 

  69. 69.

    F. Ungar, M. Cygorek, V.M. Axt, Phys. Rev. B 95, 245203 (2017)

    ADS  Article  Google Scholar 

  70. 70.

    R.C. Iotti, F. Rossi, EPL 112, 67005 (2015)

    ADS  Article  Google Scholar 

  71. 71.

    G.C. Cho, W. Kütt, H. Kurz, Phys. Rev. Lett. 65, 764 (1990)

    ADS  Article  Google Scholar 

  72. 72.

    R.C. Iotti, F. Rossi, M.S. Vitiello, G. Scamarcio, L. Mahler, A. Tredicucci, Appl. Phys. Lett. 97, 033110 (2010)

    ADS  Article  Google Scholar 

  73. 73.

    M.S. Vitiello, R.C. Iotti, F. Rossi, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, Q. Hu, G. Scamarcio, Appl. Phys. Lett. 100, 091101 (2012)

    ADS  Article  Google Scholar 

  74. 74.

    R.C. Iotti, F. Rossi, New J. Phys. 15, 075027 (2013)

    ADS  Article  Google Scholar 

  75. 75.

    V.M. Axt, M. Herbst, T. Kuhn, Superlattices Microstruct. 26, 117 (1999)

    ADS  Article  Google Scholar 

  76. 76.

    O. Verzelen, R. Ferreira, G. Bastard, Phys. Rev. Lett. 88, 146803 (2002)

    ADS  Article  Google Scholar 

  77. 77.

    T. Grange, R. Ferreira, G. Bastard, Phys. Rev. B 76, 241304 (2007)

    ADS  Article  Google Scholar 

  78. 78.

    L. Bányai, D.B.T. Thoai, E. Reitsamer, H. Haug, D. Steinbach, M.U. Wehner, M. Wegener, T. Marschner, W. Stolz, Phys. Rev. Lett. 75, 2188 (1995)

    ADS  Article  Google Scholar 

  79. 79.

    M.U. Wehner, M.H. Ulm, D.S. Chemla, M. Wegener, Phys. Rev. Lett. 80, 1992 (1998)

    ADS  Article  Google Scholar 

  80. 80.

    A. Leitenstorfer, A. Lohner, K. Rick, P. Leisching, T. Elsaesser, T. Kuhn, F. Rossi, W. Stolz, K. Ploog, Phys. Rev. B 49, 16372 (1994)

    ADS  Article  Google Scholar 

  81. 81.

    S. Haas, F. Rossi, T. Kuhn, Phys. Rev. B 53, 12855 (1996)

    ADS  Article  Google Scholar 

  82. 82.

    H. Breuer, F. Petruccione, The theory of open quantum systems (OUP, Oxford, 2007)

  83. 83.

    R. Zimmermann, J. Wauer, J. Lumin. 58, 271 (1994)

    Article  Google Scholar 

  84. 84.

    R.C. Iotti, F. Rossi, Appl. Phys. Lett. 76, 2265 (2000)

    ADS  Article  Google Scholar 

  85. 85.

    S. De Rinaldis, I. D’Amico, F. Rossi, Phys. Rev. B 69, 235316 (2004)

    ADS  Article  Google Scholar 

  86. 86.

    B. Krummheuer, V.M. Axt, T. Kuhn, I. D’Amico, F. Rossi, Phys. Rev. B 71, 235329 (2005)

    ADS  Article  Google Scholar 

  87. 87.

    G. Callsen, G.M.O. Pahn, S. Kalinowski, C. Kindel, J. Settke, J. Brunnmeier, C. Nenstiel, T. Kure, F. Nippert, A. Schliwa et al., Phys. Rev. B 92, 235439 (2015)

    ADS  Article  Google Scholar 

  88. 88.

    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)

    ADS  Article  Google Scholar 

  89. 89.

    T. Posske, C.X. Liu, J.C. Budich, B. Trauzettel, Phys. Rev. Lett. 110, 016602 (2013)

    ADS  Article  Google Scholar 

  90. 90.

    F. Dolcini, Phys. Rev. B 85, 033306 (2012)

    ADS  Article  Google Scholar 

  91. 91.

    A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Nature 443, 193 (2006)

    ADS  Article  Google Scholar 

  92. 92.

    A. Levy Yeyati, J.C. Cuevas, A. Martín-Rodero, Phys. Rev. Lett. 95, 056804 (2005)

    ADS  Article  Google Scholar 

  93. 93.

    F. Dolcini, L. Dell’Anna, Phys. Rev. B 78, 024518 (2008)

    ADS  Article  Google Scholar 

  94. 94.

    M. Glässl, A. Vagov, S. Lüker, D.E. Reiter, M.D. Croitoru, P. Machnikowski, V.M. Axt, T. Kuhn, Phys. Rev. B 84, 195311 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rita Claudia Iotti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iotti, R.C., Rossi, F. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments. Eur. Phys. J. B 90, 250 (2017). https://doi.org/10.1140/epjb/e2017-80462-3

Download citation

Keywords

  • Mesoscopic and Nanoscale Systems