Skip to main content

Advertisement

Log in

Anomalous Nernst effect in type-II Weyl semimetals

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  3. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  4. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  5. X.-L. Qi, S.-C. Zhang, arXiv:1001.1602 (2010)

  6. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  7. A. Altland, M.R. Zirnbauer, Phys. Rev. B 55, 1142 (1997)

    Article  ADS  Google Scholar 

  8. A. Kitaev, AIP Conf. Proc. 1134, 22 (2009)

    Article  ADS  Google Scholar 

  9. A.P. Schnyder, S. Ryu, A. Furusaki, A.W. Ludwig, Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  10. S. Ryu, A.P. Schnyder, A. Furusaki, A.W. Ludwig, New J. Phys. 12, 065010 (2010)

    Article  ADS  Google Scholar 

  11. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  12. S. Murakami, S. Iso, Y. Avishai, M. Onoda, N. Nagaosa, Phys. Rev. B 76, 205304 (2007)

    Article  ADS  Google Scholar 

  13. S.-Y. Xu et al., Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  14. H. Yi et al., arXiv:1405.5702 (2014)

  15. S.-Y. Xu et al., Nat. Phys. 11, 748 (2015)

    Article  Google Scholar 

  16. Z. Liu et al., Nat. Mater. 13, 677 (2014)

    Article  ADS  Google Scholar 

  17. Y. Xu, F. Zhang, C. Zhang, Phys. Rev. Lett. 115, 265304 (2015)

    Article  ADS  Google Scholar 

  18. A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Nature 527, 495 (2015)

    Article  ADS  Google Scholar 

  19. B. Yan, C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337 (2016)

    Article  ADS  Google Scholar 

  20. A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  21. G.B. Halász, L. Balents, Phys. Rev. B 85, 035103 (2012)

    Article  ADS  Google Scholar 

  22. A. Zyuzin, S. Wu, A. Burkov, Phys. Rev. B 85, 165110 (2012)

    Article  ADS  Google Scholar 

  23. A. Burkov, M. Hook, L. Balents, Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  24. D. Culcer, J. Sinova, N. Sinitsyn, T. Jungwirth, A. MacDonald, Q. Niu, Phys. Rev. Lett. 93, 046602 (2004)

    Article  ADS  Google Scholar 

  25. G. Sundaram, Q. Niu, Phys. Rev. B 59, 14915 (1999)

    Article  ADS  Google Scholar 

  26. M.-C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)

    Article  ADS  Google Scholar 

  27. D. Xiao, M.-C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)

    Article  ADS  Google Scholar 

  28. D. Thouless, M. Kohmoto, M. Nightingale, M. Den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  29. G.E. Volovik, in The universe in a helium droplet (Oxford University Press, 2003), Vol. 117

  30. H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 185, 20 (1981)

    Article  ADS  Google Scholar 

  31. H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 193, 173 (1981)

    Article  ADS  Google Scholar 

  32. X. Huang et al., Phys. Rev. X 5, 031023 (2015)

    Google Scholar 

  33. Y. Sun, S.-C. Wu, M.N. Ali, C. Felser, B. Yan, Phys. Rev. B 92, 161107 (2015)

    Article  ADS  Google Scholar 

  34. S.-M. Huang et al., Nat. Commun. 6, 7373 (2015)

    Article  Google Scholar 

  35. B. Lv et al., Nat. Phys. 11, 724 (2015)

    Article  Google Scholar 

  36. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)

    Article  ADS  Google Scholar 

  37. J.S. Bell, R. Jackiw, Il Nuovo Cimento A 1965–1970 60, 47 (1969)

    Article  Google Scholar 

  38. P. Goswami, G. Sharma, S. Tewari, Phys. Rev. B 92, 161110 (2015)

    Article  ADS  Google Scholar 

  39. V. Aji, Phys. Rev. B 85, 241101 (2012)

    Article  ADS  Google Scholar 

  40. S.L. Adler, Phys. Rev. 177, 2426 (1969)

    Article  ADS  Google Scholar 

  41. J. Jiang et al., Nat. Commun. 8, 13973 (2017)

    Article  ADS  Google Scholar 

  42. M. Trescher, B. Sbierski, P.W. Brouwer, E.J. Bergholtz, Phys. Rev. B 91, 115135 (2015)

    Article  ADS  Google Scholar 

  43. A.A. Zyuzin, R.P. Tiwari, JETP Lett. 103, 717 (2016)

    Article  ADS  Google Scholar 

  44. G. Sharma, P. Goswami, S. Tewari, Phys. Rev. B 96, 045112 (2017)

    Article  ADS  Google Scholar 

  45. T.M. McCormick, I. Kimchi, N. Trivedi, Phys. Rev. B 95, 075133 (2017)

    Article  ADS  Google Scholar 

  46. G. Sharma, C. Moore, S. Saha, S. Tewari, Phys. Rev. B 96, 195119 (2017)

    Article  ADS  Google Scholar 

  47. R. Lundgren, P. Laurell, G.A. Fiete, Phys. Rev. B 90, 165115 (2014)

    Article  ADS  Google Scholar 

  48. K.-S. Kim, H.-J. Kim, M. Sasaki, Phys. Rev. B 89, 195137 (2014)

    Article  ADS  Google Scholar 

  49. D. Son, B. Spivak, Phys. Rev. B 88, 104412 (2013)

    Article  ADS  Google Scholar 

  50. M.V. Berry, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 392, 45 (1984)

    Article  ADS  Google Scholar 

  51. M.-C. Chang, Q. Niu, Phys. Rev. Lett. 75, 1348 (1995)

    Article  ADS  Google Scholar 

  52. C. Duval, Z. Horváth, P. Horváthy, L. Martina, P. Stichel, Mod. Phys. Lett. B 20, 373 (2006)

    Article  ADS  Google Scholar 

  53. N.W. Ashcroft, N.D. Mermin, S. Rodriguez, Solid state physics (American Association of PhysicsTeachers, 1976)

  54. J.M. Ziman, Electrons and phonons: the theory of transport phenomena in solids (Oxford University Press, 1960)

  55. D. Xiao, Y. Yao, Z. Fang, Q. Niu, Phys. Rev. Lett. 97, 026603 (2006)

    Article  ADS  Google Scholar 

  56. C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M.Z. Hasan, J. Wang, C. Zhang, S. Jia, arXiv:1502.00251 (2015)

  57. A. Mar, S. Jobic, J.A. Ibers, J. Am. Chem. Soc. 114, 8963 (1992)

    Article  Google Scholar 

  58. G. Sharma, P. Goswami, S. Tewari, Phys. Rev. B 93, 035116 (2016)

    Article  ADS  Google Scholar 

  59. Y. Ferreiros, A. Zyuzin, J.H. Bardarson, arXiv:1707.01444 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhodip Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Tewari, S. Anomalous Nernst effect in type-II Weyl semimetals. Eur. Phys. J. B 91, 4 (2018). https://doi.org/10.1140/epjb/e2017-80437-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80437-4

Keywords

Navigation