Cut contribution to momentum autocorrelation function of an impurity in a classical diatomic chain

Regular Article
  • 9 Downloads

Abstract

A classic diatomic chain with a mass impurity is studied using the recurrence relations method. The momentum autocorrelation function of the impurity is a sum of contributions from two pairs of resonant poles and three branch cuts. The former results in cosine function and the latter in acoustic and optical branches. By use of convolution theorem, analytical expressions for the acoustic and optical branches are derived as even-order Bessel function expansions. The expansion coefficients are integrals of elliptic functions in the real axis for the acoustic branch and along a contour parallel to the imaginary axis for the optical branch, respectively. An integral is carried out for the calculation of optical branch: ∫0ϕ/√((1 − r12 sin2 θ)(1 − r22 sin2 θ)) = igsn−1 (sin ϕ) (r22 > r12 > 1, g is a constant).

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.W. Montroll, R.B. Potts, Phys. Rev. 100, 525 (1955) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Mazur, E.W. Montroll, R.P. Potts, J. Wash. Acad. Sci. 46, 2 (1956) Google Scholar
  3. 3.
    R.J. Rubin, Phys. Rev. 131, 964 (1963) ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, in Theory of lattice dynamics in the harmonic approximation (Academic, New York, 1963), p. 179 Google Scholar
  5. 5.
    P. Dean, J. Inst. Maths Appl. 3, 98 (1967) CrossRefGoogle Scholar
  6. 6.
    G. Lucovsky, M.H. Brodsky, E. Burstein, Phys. Rev. B 2, 3295 (1970) ADSCrossRefGoogle Scholar
  7. 7.
    R.F. Fox, Phys. Rev. A 27, 3216 (1983) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.S. Baker Jr., A.J. Sievers, Rev. Mod. Phys. 47, S1 (1975) CrossRefGoogle Scholar
  9. 9.
    M.H. Lee, Phys. Rev. Lett. 49, 1072 (1982) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M.H. Lee, J. Math Phys. 24, 2512 (1983) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.H. Lee, J. Hong, J. Florencio Jr., Phys. Scripta T19, 498 (1987) ADSCrossRefGoogle Scholar
  12. 12.
    U. Balucani, M.H. Lee, V. Tognetti, Phys. Rep. 373, 409 (2003) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    V.S. Viswanath, G. Mueller, Recursion method (Springer, Berlin, 1994) Google Scholar
  14. 14.
    J. Florencio Jr. M.H. Lee, Phys. Rev. A 31, 3231 (1985) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M.H. Lee, J. Florencio Jr., J. Hong, J. Phys. A 22, L331 (1989) ADSCrossRefGoogle Scholar
  16. 16.
    M.B. Yu, J.H. Kim, M.H. Lee, J. Lumin. 45, 144 (1990) CrossRefGoogle Scholar
  17. 17.
    J. Kim, M.H. Lee, Physica A 304, 409 (2002) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Kim, I. Sawada, Phys. Rev. E 61, R2172 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    M.H. Lee, Symmetry 8 (2016) Google Scholar
  20. 20.
    M.B. Yu, Eur. Phys. J. B 85, 379 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    M.B. Yu, Eur. Phys. J. B 86, 57 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Yu, Physica A 398, 252 (2014) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M.B. Yu, Physica A 438, 469 (2015) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M.B. Yu, Physica A 447, 411 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    M.B. Yu, Phys. Lett. A 380, 2583 (2016) Google Scholar
  26. 26.
    M.B. Yu, Eur. Phys. J. B 90, 87 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    S. Sen, M. Long, Phys. Rev. B 46, 14617 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    S. Sen, Phys. Rev. B 44, 7444 (1991) ADSCrossRefGoogle Scholar
  29. 29.
    S. Sen, Physica A 360, 304 (2006) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A.V. Mokshin, R.M. Yulmetyev, P. Hanggi, Phys. Rev. Lett. 95, 200601 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    A. Wierling, Eur. Phys. J. B 85, 20571 (2012) CrossRefGoogle Scholar
  32. 32.
    S.X. Chen, Y.Y. Shen, X.M. Kong, Phys. Rev. B 82, 174404 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    X.J. Yuan, X.M. Kong, Z.B. Xu, Z.Q. Liu, Physica A 389, 242 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    E.M. Silva, Phys. Rev. E 92, 042146 (2015) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    P.R.C. Guimaraes, J.A. Placak, O.F. de Alcantara Bonfim, J. Florencio, Phys. Rev. E 92, 042115 (2015) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    G.E. Roberts, H. Kaufman, in Table of Laplace transforms (Saunders, Philadelphia, 1966), p. 196 Google Scholar
  37. 37.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of integrals, series and products, 7th edn. (A&P, San Diego, 2007), p. 1111 Google Scholar
  38. 38.
    A.F. Byrd, M.D. Friedman, in Handbook of elliptic integrals for engineers and physicists (Springer, Berlin, 1954), p. 166 Google Scholar
  39. 39.
    A.F. Byrd, M.D. Friedman, in Handbook of elliptic integrals for engineers and physicists (Springer, Berlin, 1954), p. 167 Google Scholar
  40. 40.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of integrals, series and products, 7th edn. (A&P, San Diego, 2007), p. 34 Google Scholar
  41. 41.
    G.J. Tee, N. Z. J. Math 41, 83 (2011) MathSciNetGoogle Scholar
  42. 42.
    L.M. Milne-Thomson, Jacobian elliptic functions and theta functions, no. 16 (p. 569) and no. 17 (p. 589), in Handbook of mathematical functions with formulas, graphs and mathematical tables, Applied mathematics series, edited by M. Abramowitz, I.A. Stegun (National Bureau of Standards, Washington, D.C., 1964), Vol. 55 Google Scholar
  43. 43.
    A.F. Byrd, M.D. Friedman, in Handbook of elliptic integrals for engineers and physicists (Springer, Berlin, 1954), p. 201 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Las VegasUSA

Personalised recommendations