1fβ noise for scale-invariant processes: how long you wait matters

Regular Article
  • 23 Downloads
Part of the following topical collections:
  1. Topical issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook

Abstract

We study the power spectrum which is estimated from a nonstationary signal. In particular we examine the case when the signal is observed in a measurement time window [tw, tw + tm], namely the observation started after a waiting time tw, and tm is the measurement duration. We introduce a generalized aging Wiener–Khinchin theorem which relates between the spectrum and the time- and ensemble-averaged correlation functions for arbitrary tm and tw. Furthermore we provide a general relation between the non-analytical behavior of the scale-invariant correlation function and the aging 1∕fβ noise. We illustrate our general results with two-state renewal models with sojourn times’ distributions having a broad tail.

References

  1. 1.
    A. Van der Ziel, Adv. Electron. Electron Phys. 49, 225 (1979) CrossRefGoogle Scholar
  2. 2.
    P. Dutta, P. Horn, Rev. Mod. Phys. 53, 497 (1981) ADSCrossRefGoogle Scholar
  3. 3.
    F. Hooge, T. Kleinpenning, L. Vandamme, Rep. Prog. Phys. 44, 479 (1981) ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Keshner, IEEE 70, 212 (1982) ADSCrossRefGoogle Scholar
  5. 5.
    M. Weissman, Rev. Mod. Phys. 60, 537 (1988) ADSCrossRefGoogle Scholar
  6. 6.
    J. Banerjee, M.K. Verma, S. Manna, S. Ghosh, Eur. Phys. Lett. 73, 457 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    B. Kaulakys, M. Alaburda, J. Stat. Mech. Theor. Exp. 2009, P02051 (2009) CrossRefGoogle Scholar
  8. 8.
    A.C. Yadav, R. Ramaswamy, D. Dhar, Phys. Rev. E 85, 061114 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    D. Krapf, Phys. Chem. Chem. Phys. 15, 459 (2013) CrossRefGoogle Scholar
  10. 10.
    M.A. Rodríguez, Phys. Rev. E 92, 012112 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    J.P. Bouchaud, J. Phys. I 2, 1705 (1992) Google Scholar
  12. 12.
    S.B. Lowen, M.C. Teich, Phys. Rev. E 47, 992 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    G. Margolin, E. Barkai, J. Chem. Phys. 121, 1566 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    G. Margolin, E. Barkai, Phys. Rev. Lett. 94, 080601 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    G. Margolin, E. Barkai, J. Stat. Phys. 122, 137 (2006) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Manneville, J. Phys. 41, 1235 (1980) MathSciNetCrossRefGoogle Scholar
  17. 17.
    B.B. Mandelbrot, IEEE Trans. Inf. Theory 13, 289 (1967) CrossRefGoogle Scholar
  18. 18.
    T. Graves, R.B. Gramacy, N. Watkins, C. Franzke, Entropy 19, 437 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    N.W. Watkins, arXiv:1603.00738 (2016)
  20. 20.
    F.D. Stefani, J.P. Hoogenboom, E. Barkai, Phys. Today 62, 34 (2009) CrossRefGoogle Scholar
  21. 21.
    S. Sadegh, E. Barkai, D. Krapf, New J. Phys. 16, 113054 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    J.P. Bouchaud, L.F. Cugliandolo, J. Kurchan, M. Mezard, in Spin-glasses and random fields, edited by A.P. Young (World Scientific, 1997) Google Scholar
  23. 23.
    L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55, 3898 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    K.A. Takeuchi, J. Phys. A: Math. Theor. 50, 264006 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    J.H. Schulz, E. Barkai, R. Metzler, Phys. Rev. Lett. 110, 020602 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Schulz, E. Barkai, R. Metzler, Phys. Rev. X 4, 011028 (2014) Google Scholar
  27. 27.
    N. Leibovich, E. Barkai, Phys. Rev. E 88, 032107 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    A. Barrat, R. Burioni, M. Mézard, Phys. Math. Gen. 29, 1311 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    A. Dechant, E. Lutz, D. Kessler, E. Barkai, Phys. Rev. E 85, 051124 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    D.A. Kessler, E. Barkai, Phys. Rev. Lett. 105, 120602 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    A. Taloni, A. Chechkin, J. Klafter, Phys. Rev. Lett. 104, 160602 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    N. Leibovich, E. Barkai, Phys. Rev. Lett. 115, 080602 (2015) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N. Leibovich, A. Dechant, E. Lutz, E. Barkai, Phys. Rev. E 94, 052130 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    A. Dechant, E. Lutz, Phys. Rev. Lett. 115, 080603 (2015) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    T. Akimoto, E. Barkai, Phys. Rev. E 87, 032915 (2013) ADSCrossRefGoogle Scholar
  36. 36.
    M. Niemann, E. Barkai, H. Kantz, Math. Model. Nat. Phenom. 11, 191 (2016) MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.G. Cherstvy, R. Metzler, J. Stat. Mech. Theor. Exp. 2015, P05010 (2015) CrossRefGoogle Scholar
  38. 38.
    H. Safdari, A.G. Cherstvy, A.V. Chechkin, F. Thiel, I.M. Sokolov, R. Metzler, J. Phys. A: Math. Theor. 48, 375002 (2015) CrossRefGoogle Scholar
  39. 39.
    M. Niemann, H. Kantz, E. Barkai, Phys. Rev. Lett. 110, 140603 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    M. Pelton, G. Smith, N.F. Scherer, R.A. Marcus, Proc. Natl. Acad. Sci. 104, 14249 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    J. Herault, F. Pétrélis, S. Fauve, Eur. Phys. Lett. 111, 44002 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    V. Zaburdaev, S. Denisov, J. Klafter, Rev. Mod. Phys. 87, 483 (2015) ADSCrossRefGoogle Scholar
  43. 43.
    C. Godreche, J. Luck, J. Stat. Phys. 104, 489 (2001) CrossRefGoogle Scholar
  44. 44.
    M. Lukovic, P. Grigolini, J. Chem. Phys. 129, 184102 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    G. Aquino, M. Bologna, B.J. West, P. Grigolini, Phys. Rev. E 83, 051130 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    R. Kubo, M. Toda, N. Hashitsume, Statistical physics II: nonequilibrium statistical mechanics (Springer, 2012) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsInstitute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations