Advances in theoretical and experimental XAFS studies of thermodynamic properties, anharmonic effects and structural determination of fcc crystals

  • Nguyen Van Hung
  • Cu Sy Thang
  • Nguyen Ba Duc
  • Dinh Quoc Vuong
  • Tong Sy Tien
Regular Article

Abstract

Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye–Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.

Keywords

Solid State and Materials 

References

  1. 1.
    E.D. Crozier, J.J. Rehr, R. Ingalls, in X-ray absorption, edited by D.C. Koningsberger, R. Prins (Wiley, New York, 1988), Chap. 9 Google Scholar
  2. 2.
    J.M. Tranquada, R. Ingalls, Phys. Rev. B 28, 3520 (1983) ADSCrossRefGoogle Scholar
  3. 3.
    F.D. Vila, J.J. Rehr, H.H. Rossner, H.J. Krappe, Phys. Rev. B 76, 014301 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    N.V. Hung, N.B. Trung, B. Kirchner, Physica B 405, 2519 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    N.V. Hung, V.V. Hung, H.K. Hieu, R.R. Frahm, Physica B 406, 456 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    N.V. Hung, C.S. Thang, N.C. Toan, H.K. Hieu, Vacuum 101, 63 (2014) ADSCrossRefGoogle Scholar
  7. 7.
    N.V. Hung, J. Phys. Soc. Jpn. 83, 024802 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    N.V. Hung, T.S. Tien, N.B. Duc, D.Q. Vuong, Mod. Phys. Lett. B 28, 1450174 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    N.V. Hung, T.T. Hue, H.D. Khoa, D.Q. Vuong, Physica B 503, 174 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    N.V. Hung, J.J. Rehr, Phys. Rev. B 56, 43 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Beccara, G. Dalba, P. Fornasini, R. Grisenti, F. Pederiva, A. Sanson, Phys. Rev. B 68, 140301(R) (2003) ADSCrossRefGoogle Scholar
  12. 12.
    V. Pirog, T.I. Nedoseikina, A.I. Zarubin, A.T. Shuvaev, J. Phys.: Condens. Matter 14, 1825 (2002) ADSGoogle Scholar
  13. 13.
    T. Yokoyama, T. Sasukawa, T. Ohta, Jpn. J. Appl. Phys. 28, 1905 (1989) ADSCrossRefGoogle Scholar
  14. 14.
    Y.S. Toukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermophysical properties of matter (IFI/Plenum, New York, 1975) Google Scholar
  15. 15.
    E.A. Stern, P. Livins, Z. Zhang, Phys. Rev. B 43, 8850 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, K. Baberschke, Phys. Rev. B 49, 888 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    A.I. Frenkel, J.J. Rehr, Phys. Rev. B 48, 585 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    T. Miyanaga, T. Fujikawa, J. Phys. Soc. Jpn. 63, 1036 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    T. Yokoyama, Phys. Rev. B 57, 3423 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Poiarkova, J.J. Rehr, Phys. Rev. B 59, 948 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    G. Dalba, P. Fornasini, R. Grisenti, J. Purans, Phys. Rev. Lett. 82, 4240 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    I.V. Pirog, T.I. Nedoseikina, Physica B 334, 123 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    J.J. Rehr, J.J. Kas, M.P. Prange, A.P. Sorini, Y. Takimoto, F. Villa, C. R. Phys. 10, 548 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    P. Fornasini, R. Grisenti, J. Synchrotron Rad. 22, 1242 (2015) CrossRefGoogle Scholar
  25. 25.
    N.V. Hung, R. Frahm, Physica B 208, 91 (1995) Google Scholar
  26. 26.
    N.V. Hung, R. Frahm, H. Kamitsubo, J. Phys. Soc. Jpn. 65,3571 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    N.V. Hung, J. Phys. IV France 7, C2 (1997) CrossRefGoogle Scholar
  28. 28.
    R.P. Feynman, in Statistical mechanics, edited by J. Shaham (W. A. Benjamin, Inc., Advanced Book Program, Reading, MA, 1972) Google Scholar
  29. 29.
    J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991) CrossRefGoogle Scholar
  30. 30.
    W. Klysubun, P. Sombunchoo, W. Deenam, C. Komark, J. Synchrotron Rad. 19, 930 (2012) CrossRefGoogle Scholar
  31. 31.
    L.A. Girifalco, W.G. Weizer, Phys. Rev. 114, 687 (1959) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nguyen Van Hung
    • 1
  • Cu Sy Thang
    • 2
    • 3
  • Nguyen Ba Duc
    • 4
  • Dinh Quoc Vuong
    • 5
  • Tong Sy Tien
    • 6
  1. 1.Institute of Research and Development, Duy Tan UniversityDa NangViet Nam
  2. 2.Institute of Geological Sciences (IGS), Vietnam Academy of Science and Technology (VAST)Ha NoiViet Nam
  3. 3.Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST)Ha NoiViet Nam
  4. 4.Department of PhysicsTan Trao UniversityTuyen QuangViet Nam
  5. 5.Cam pha School, Quang Ninh Education & Training DepartmentQuang NinhViet Nam
  6. 6.Department of Basic SciencesUniversity of Fighting & PreventionHa NoiViet Nam

Personalised recommendations