Abstract
We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.
References
M.A. Nowak, R.M. May, Nature 359, 826 (1992)
M. Perc, P. Grigolini, Chaos Solitons Fract. 56, 1 (2013)
P.C. Julia, J. Gomez-Gardenes, A. Traulsen, Y. Moreno, New J. Phys. 11, 083031 (2009)
L.M. Floria, C. Gracia-Lazaro, J. Gomez-Gardenes, Y. Moreno, Phys. Rev. E 79, 026106 (2009)
M. Tomassini, in Proc. Conf. on Genetic and Evolutionary Computation Companion, 2014
M. Perc et al., J. R. Soc. Interface 10–80, 20120997 (2013)
M.A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life (Harvard University Press, 2006)
A. Traulsen, F.A. Reed, J. Theor. Biol. 299, 120 (2012)
M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008)
M.A. Nowak, Science 314, 1560 (2006)
F. Fu, D.I. Rosenbloom, L. Wang, M.A. Nowak, Proc. R. Soc. B 278, 42 (2011)
N. Masuda, Sci. Rep. 2, 576 (2012)
M.A. Javarone, A. Antonioni, F. Caravelli, EPL 114, 38001 (2016)
L.N. de Castro, Phys. Life Rev. 4, 1 (2007)
J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, 1975)
D.E. Goldberg, Mach. Learn. 2, (1989)
M.W. Krentel, in Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, 1986, p. 69
M. Dorigo, C. Blum, Theor. Comput. Sci. 344, 243 (2005)
H. Kellerer, U. Pferschy, D. Pisinger, Introduction to NP-Completeness of Knapsack Problems (Springer, 2004)
M. Dorigo, G. Caro, L.M. Gambardella, Artif. Life 5, 137 (1999)
C. Baldassi, A. Braunstein, A. Ramezanpour, R. Zecchina, Mathematical Foundations of Complex Networked Information Systems (2015), pp. 27–49
F. Altarelli, A. Braunstein, A. Ramezanpour, R. Zecchina, JSTAT 11, P11009 (2011)
L. Zdeborova, F. Krzakala, Statistical physics of inference: thresholds and algorithms, arXiv:1511.02476 (2015)
T. Jorg, F. Krzakala, G. Semerjian, F. Zamponi, Phys. Rev. Lett. 104, 207206 (2010)
D. Amit, Modeling Brain Function (Cambridge Univ. Press, 1989)
J.J. Hopfield, D.W. Tank, Biol. Cybern. 52, 141 (1985)
S. Kirkpatrick, J. Stat. Phys. 34, 975 (1983)
J. Vannimenus, M. Mezard, J. Phys. Lett. 45, 1145 (1984)
P.W. Anderson, Science 177, 393 (1972)
M. San Miguel et al., Eur. Phys. J. Special Top. 214, 245 (2012)
M. Dorigo, L.M. Gambardella, IEEE Evol. Comput. 1, 53 (1997)
M. Bellingeri, A. Agliari, D. Cassi, Mod. Phys. Lett. B 29, 1550180 (2015)
M. Kochmanski, T. Paszkiewicz, S. Wolski, Eur. J. Phys. 34, 1555 (2013)
M. Mezard, G. Parisi, M.A. Virasoro, Spin glass theory and beyond (World Scientific Publishing, 1990)
S. Franz et al., PNAS 109, 18725 (2012)
K. Huang, Statistical Mechanics, 2nd edn. (Wiley, 1987)
S. Gekle, L. Peliti, S. Galam, Eur. Phys. J. B 45, 569 (2005)
A. Barra, Del G. Ferraro, D. Tantari, EPJ-B 86, 332 (2013)
E. Agliari et al., Neural Networks 66, 22 (2015)
M.A. Javarone, Phys. A: Stat. Mech. Appl. 463, 262 (2016)
A. Szolnoki, M. Perc, EPL 92, 38003 (2010)
E. Fehr, S. Gachter, Nature 415, 137 (2002)
V. Sood, S. Redner, Phys Rev. Lett. 94, 178701 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Javarone, M.A. Solving optimization problems by the public goods game. Eur. Phys. J. B 90, 171 (2017). https://doi.org/10.1140/epjb/e2017-80346-6
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2017-80346-6