Statistical properties of Olami-Feder-Christensen model on Barabasi-Albert scale-free network

Abstract

The Olami-Feder-Christensen model on the Barabasi-Albert type scale-free network is investigated in the context of statistical seismology. This simple model may be regarded as the interacting faults obeying power-law size distribution under two assumptions: (i) each node represents a distinct fault; (ii) the degree of a node is proportional to the fault size and the energy accumulated around it. Depending on the strength of an interaction, the toppling events exhibit temporal clustering as is ubiquitously observed for natural earthquakes. Defining a geometrical parameter that characterizes the heterogeneity of the energy stored in the nodes, we show that aftershocks are characterized as a process of regaining the heterogeneity that is lost by the main shock. The heterogeneity is not significantly altered during the loading process and foreshocks.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. Gutenberg, C.F. Richter, Bull. Seismol. Soc. Am. 34, 185 (1944)

    Google Scholar 

  2. 2.

    F. Omori, J. Coll. Sci. Imp. Univ. Tokyo 7, 111 (1894)

    Google Scholar 

  3. 3.

    T. Utsu, Geophys. Mag. 30, 521 (1961)

    Google Scholar 

  4. 4.

    D. Schorlemmer, S. Wiemer, M. Wyss, Nature 437, 539 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    K. Nanjo, N. Hirata, K. Obara, K. Kasahara, Geophys. Res. Lett. 39, L20304 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    T. Tormann, B. Enescu, J. Woessner, S. Wiemer, Nat. Geosci. 8, 152 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    C.H. Scholz, Bull. Seismol. Soc. Am. 58, 399 (1968)

    Google Scholar 

  8. 8.

    M. Spada, T. Tormann, S. Wiemer, B. Enescu, Geophys. Res. Lett. 40, 709 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    T. Nishikawa, S. Ide, Nat. Geosci. 7, 904 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    H. Kawamura, T. Hatano, N. Kato, S. Biswas, B.K. Chakrabarti, Rev. Mod. Phys. 84, 839 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967)

    Google Scholar 

  12. 12.

    M. Otsuka, Phys. Earth Planet. Inter. 6, 311 (1972)

    ADS  Article  Google Scholar 

  13. 13.

    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    ADS  Article  Google Scholar 

  14. 14.

    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    J. Carlson, J. Langer, Phys. Rev. A 40, 6470 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    J. Carlson, J. Langer, Phys. Rev. Lett. 62, 2632 (1989)

    ADS  Article  Google Scholar 

  17. 17.

    J.B. Rundle, D.D. Jackson, Bull. Seismol. Soc. Am. 67, 1363 (1977)

    Google Scholar 

  18. 18.

    J.B. Rundle, S.R. Brown, J. Stat. Phys. 65, 403 (1991)

    ADS  Article  Google Scholar 

  19. 19.

    P. Bak, C. Tang, J. Geophys. Res. 94, 635 (1989)

    Article  Google Scholar 

  20. 20.

    K. Ito, M. Matsuzaki, J. Geophys. Res. 95, 6853 (1990)

    ADS  Article  Google Scholar 

  21. 21.

    H. Nakanishi, Phys. Rev. A 41, 7086 (1990)

    ADS  Article  Google Scholar 

  22. 22.

    H. Nakanishi, Phys. Rev. A 43, 6613 (1991)

    ADS  Article  Google Scholar 

  23. 23.

    K. Christensen, Z. Olami, J. Geophys. Res. 97, 8729 (1992)

    ADS  Article  Google Scholar 

  24. 24.

    K. Christensen, Z. Olami, Phys. Rev. A 46, 1829 (1992)

    ADS  Article  Google Scholar 

  25. 25.

    S. Hainzl, G. Zöller, J. Kurths, J. Geophys. Res. 104, 7243 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    S. Hainzl, G. Zöller, J. Kurths, Nonlinear Process. Geophys. 7, 21 (2000)

    ADS  Article  Google Scholar 

  27. 27.

    Z. Olami, H.J.S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992)

    ADS  Article  Google Scholar 

  28. 28.

    S. Hergarten, H.J. Neugebauer, Phys. Rev. Lett. 88, 238501 (2002)

    ADS  Article  Google Scholar 

  29. 29.

    A. Helmstetter, S. Hergarten, D. Sornette, Phys. Rev. E 70, 046120 (2004)

    ADS  Article  Google Scholar 

  30. 30.

    H. Kawamura, T. Yamamoto, T. Kotani, H. Yoshino, Phys. Rev. E 81, 031119 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    J.R. Rice, J. Geophys. Res. 98, 9885 (1993)

    ADS  Article  Google Scholar 

  32. 32.

    T. Matsuda, Bull. Earthq. Res. Inst. Univ. Tokyo 65, 289 (1990)

    Google Scholar 

  33. 33.

    S.G. Wesnousky, Nature 444, 358 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    A.L. Barabási, R. Albert, Science 286, 509 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    S. Abe, N. Suzuki, Europhys. Lett. 65, 581 (2004)

    ADS  Article  Google Scholar 

  36. 36.

    F. Caruso, V. Latora, A. Pluchino, A. Apisarda, B. Tadić, Eur. Phys. J. B 50, 243 (2006)

    ADS  Article  Google Scholar 

  37. 37.

    F. Caruso, A. Pluchino, V. Latora, S. Vinciguerra, A. Rapisarda, Phys. Rev. E 75, 055101 (2007)

    ADS  Article  Google Scholar 

  38. 38.

    F. Caruso, H. Kantz, Eur. Phys. J. B 79, 7 (2011)

    ADS  Article  Google Scholar 

  39. 39.

    D.S. Ferreira, A.R. Papa, R. Menezes, Phys. Lett. A 379, 669 (2015)

    Article  Google Scholar 

  40. 40.

    K.I. Goh, D.S. Lee, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

    ADS  Article  Google Scholar 

  41. 41.

    B. Gutenberg, C.F. Richter, Ann. Geophys. 9, 1 (1956)

    Google Scholar 

  42. 42.

    H. Kanamori, J. Geophys. Res. 82, 2981 (1977)

    ADS  Article  Google Scholar 

  43. 43.

    F. Tajima, H. Kanamori, Phys. Earth Planet. Inter. 40, 77 (1985)

    ADS  Article  Google Scholar 

  44. 44.

    K. Aki, Bull. Earthq. Res. Inst. Tokyo Univ. 43, 237 (1965)

    Google Scholar 

  45. 45.

    C.H. Scholz, The mechanics of earthquakes and faulting (Cambridge University Press, New York, 2002)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroki Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Hatano, T. Statistical properties of Olami-Feder-Christensen model on Barabasi-Albert scale-free network. Eur. Phys. J. B 90, 248 (2017). https://doi.org/10.1140/epjb/e2017-80295-0

Download citation

Keywords

  • Statistical and Nonlinear Physics