Advertisement

Statistical properties of Olami-Feder-Christensen model on Barabasi-Albert scale-free network

  • Hiroki TanakaEmail author
  • Takahiro Hatano
Regular Article

Abstract

The Olami-Feder-Christensen model on the Barabasi-Albert type scale-free network is investigated in the context of statistical seismology. This simple model may be regarded as the interacting faults obeying power-law size distribution under two assumptions: (i) each node represents a distinct fault; (ii) the degree of a node is proportional to the fault size and the energy accumulated around it. Depending on the strength of an interaction, the toppling events exhibit temporal clustering as is ubiquitously observed for natural earthquakes. Defining a geometrical parameter that characterizes the heterogeneity of the energy stored in the nodes, we show that aftershocks are characterized as a process of regaining the heterogeneity that is lost by the main shock. The heterogeneity is not significantly altered during the loading process and foreshocks.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    B. Gutenberg, C.F. Richter, Bull. Seismol. Soc. Am. 34, 185 (1944) Google Scholar
  2. 2.
    F. Omori, J. Coll. Sci. Imp. Univ. Tokyo 7, 111 (1894) Google Scholar
  3. 3.
    T. Utsu, Geophys. Mag. 30, 521 (1961) Google Scholar
  4. 4.
    D. Schorlemmer, S. Wiemer, M. Wyss, Nature 437, 539 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    K. Nanjo, N. Hirata, K. Obara, K. Kasahara, Geophys. Res. Lett. 39, L20304 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    T. Tormann, B. Enescu, J. Woessner, S. Wiemer, Nat. Geosci. 8, 152 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    C.H. Scholz, Bull. Seismol. Soc. Am. 58, 399 (1968) Google Scholar
  8. 8.
    M. Spada, T. Tormann, S. Wiemer, B. Enescu, Geophys. Res. Lett. 40, 709 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    T. Nishikawa, S. Ide, Nat. Geosci. 7, 904 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    H. Kawamura, T. Hatano, N. Kato, S. Biswas, B.K. Chakrabarti, Rev. Mod. Phys. 84, 839 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967) Google Scholar
  12. 12.
    M. Otsuka, Phys. Earth Planet. Inter. 6, 311 (1972) ADSCrossRefGoogle Scholar
  13. 13.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987) ADSCrossRefGoogle Scholar
  14. 14.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Carlson, J. Langer, Phys. Rev. A 40, 6470 (1989) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Carlson, J. Langer, Phys. Rev. Lett. 62, 2632 (1989) ADSCrossRefGoogle Scholar
  17. 17.
    J.B. Rundle, D.D. Jackson, Bull. Seismol. Soc. Am. 67, 1363 (1977) Google Scholar
  18. 18.
    J.B. Rundle, S.R. Brown, J. Stat. Phys. 65, 403 (1991) ADSCrossRefGoogle Scholar
  19. 19.
    P. Bak, C. Tang, J. Geophys. Res. 94, 635 (1989) CrossRefGoogle Scholar
  20. 20.
    K. Ito, M. Matsuzaki, J. Geophys. Res. 95, 6853 (1990) ADSCrossRefGoogle Scholar
  21. 21.
    H. Nakanishi, Phys. Rev. A 41, 7086 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    H. Nakanishi, Phys. Rev. A 43, 6613 (1991) ADSCrossRefGoogle Scholar
  23. 23.
    K. Christensen, Z. Olami, J. Geophys. Res. 97, 8729 (1992) ADSCrossRefGoogle Scholar
  24. 24.
    K. Christensen, Z. Olami, Phys. Rev. A 46, 1829 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    S. Hainzl, G. Zöller, J. Kurths, J. Geophys. Res. 104, 7243 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    S. Hainzl, G. Zöller, J. Kurths, Nonlinear Process. Geophys. 7, 21 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    Z. Olami, H.J.S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    S. Hergarten, H.J. Neugebauer, Phys. Rev. Lett. 88, 238501 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    A. Helmstetter, S. Hergarten, D. Sornette, Phys. Rev. E 70, 046120 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    H. Kawamura, T. Yamamoto, T. Kotani, H. Yoshino, Phys. Rev. E 81, 031119 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    J.R. Rice, J. Geophys. Res. 98, 9885 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    T. Matsuda, Bull. Earthq. Res. Inst. Univ. Tokyo 65, 289 (1990) Google Scholar
  33. 33.
    S.G. Wesnousky, Nature 444, 358 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Abe, N. Suzuki, Europhys. Lett. 65, 581 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    F. Caruso, V. Latora, A. Pluchino, A. Apisarda, B. Tadić, Eur. Phys. J. B 50, 243 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    F. Caruso, A. Pluchino, V. Latora, S. Vinciguerra, A. Rapisarda, Phys. Rev. E 75, 055101 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    F. Caruso, H. Kantz, Eur. Phys. J. B 79, 7 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    D.S. Ferreira, A.R. Papa, R. Menezes, Phys. Lett. A 379, 669 (2015) CrossRefGoogle Scholar
  40. 40.
    K.I. Goh, D.S. Lee, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 148701 (2003) ADSCrossRefGoogle Scholar
  41. 41.
    B. Gutenberg, C.F. Richter, Ann. Geophys. 9, 1 (1956) Google Scholar
  42. 42.
    H. Kanamori, J. Geophys. Res. 82, 2981 (1977) ADSCrossRefGoogle Scholar
  43. 43.
    F. Tajima, H. Kanamori, Phys. Earth Planet. Inter. 40, 77 (1985) ADSCrossRefGoogle Scholar
  44. 44.
    K. Aki, Bull. Earthq. Res. Inst. Tokyo Univ. 43, 237 (1965) Google Scholar
  45. 45.
    C.H. Scholz, The mechanics of earthquakes and faulting (Cambridge University Press, New York, 2002) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Earthquake Research Institute, University of TokyoBunkyoJapan

Personalised recommendations