Skip to main content
Log in

Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  2. G.G. Guzman-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Article  ADS  Google Scholar 

  3. P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  4. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    Article  ADS  Google Scholar 

  5. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, G.L. Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  6. P.E. Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G.L. Lay, Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  7. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 075131 (1994)

    Google Scholar 

  8. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  9. C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  10. Y. Ding, J. Ni, Appl. Phys. Lett. 95, 083115 (2009)

    Article  ADS  Google Scholar 

  11. R. Qin, C.-H. Wang, W. Zhu, Y. Zhang, AIP Adv. 2, 022159 (2012)

    Article  ADS  Google Scholar 

  12. Y. Ding, Y. Wang, Appl. Phys. Lett. 100, 083102 (2012)

    Article  ADS  Google Scholar 

  13. C.H. Pan, Z. Li, C.C. Liu, G. Zhu, Z. Qiao, Y. Yao, Phys. Rev. Lett. 112, 106802 (2014)

    Article  ADS  Google Scholar 

  14. Y. Ren, Z. Qiao, Q. Niu, Rep. Prog. Phys. 79, 066501 (2016)

    Article  ADS  Google Scholar 

  15. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  ADS  Google Scholar 

  16. M. Ezawaa, Eur. Phys. J. B 85, 363 (2012)

    Article  ADS  Google Scholar 

  17. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  18. Y.G. Yao, F. Ye, X.L. Qi, S.C. Zhang, Z. Fang, Phys. Rev. B 75, 041401(R) (2007)

    Article  ADS  Google Scholar 

  19. D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)

    Article  ADS  Google Scholar 

  20. H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006)

    Article  ADS  Google Scholar 

  21. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  22. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  23. H. Li, L. Sheng, D.Y. Xing, Phys. Rev. Lett. 108, 196806 (2012)

    Article  ADS  Google Scholar 

  24. M.U. Rehman, A.A. Abid, Chin. Phys. B 26, 127304 (2017)

    Article  ADS  Google Scholar 

  25. G. Tkachova, M. Hentschel, Eur. Phys. J. B 69, 499 (2009)

    Article  ADS  Google Scholar 

  26. M.Z. Hasan, S.-Y. Xu, G. Bian, Phys. Scr. T164, 014001 (2015)

    Article  ADS  Google Scholar 

  27. T. Neupert, C. Chamon, T. Iadecola, L.H. Santos, C. Mudry, Phys. Scr. T164, 014005 (2015)

    Article  ADS  Google Scholar 

  28. D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012)

    Article  ADS  Google Scholar 

  29. D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)

    Article  ADS  Google Scholar 

  30. A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  31. M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschlogl, Appl. Phys. Lett. 102, 162412 (2013)

    Article  ADS  Google Scholar 

  32. J. Li, K. Chang, Appl. Phys. Lett. 95, 222110 (2009)

    Article  ADS  Google Scholar 

  33. M.S. Miao, Q. Yan, C.G. Van de Walle, W.K. Lou, L.L. Li, K. Chang, Phys. Rev. Lett. 109, 186803 (2012)

    Article  ADS  Google Scholar 

  34. D. Zhang, W. Lou, M. Miao, S.-C. Zhang, K. Chang, Phys. Rev. Lett. 111, 156402 (2013)

    Article  ADS  Google Scholar 

  35. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 12, 3507 (2012)

    Article  ADS  Google Scholar 

  36. C. Lian, J. Nia, AIP Adv. 3, 052102 (2013)

    Article  ADS  Google Scholar 

  37. M. Ezawa, J. Phys. Soc. Jpn 81, 104713 (2012)

    Article  ADS  Google Scholar 

  38. H. Da, W. Ding, X. Yan, Appl. Phys. Lett. 110, 141105 (2017)

    Article  ADS  Google Scholar 

  39. H. Fu, J. Zhang, Z. Ding, H. Li, S. Menga, Appl. Phys. Lett. 104, 131904 (2014)

    Article  ADS  Google Scholar 

  40. M.-M. Zhang, L. Xu, J. Zhang, J. Phys. Condens. Matter 27, 445301 (2015)

    Article  Google Scholar 

  41. C. Lian, J. Ni, AIP Adv. 3, 052102 (2013)

    Article  ADS  Google Scholar 

  42. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  43. E. Prada, P. San-Jose, L. Brey, H.A. Fertig, Solid State Commun. 151, 10751083 (2011)

    Google Scholar 

  44. J. Wang, B. Lian, S.-C. Zhang, Phys. Scr. T164, 014003 (2015)

    Article  ADS  Google Scholar 

  45. N.A. Sinitsyn, J.E. Hill, H. Min, J. Sinova, A.H. MacDonald, Phys. Rev. Lett. 97, 106804 (2006)

    Article  ADS  Google Scholar 

  46. D.N. Sheng, Z.Y. Weng, L. Sheng, F.D.M. Haldane, Phys. Rev. Lett. 97, 036808 (2006)

    Article  ADS  Google Scholar 

  47. Y. Yang, Z. Xu, L. Sheng, B. Wang, D.Y. Xing, D.N. Sheng, Phys. Rev. Lett. 107, 066602 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majeed Ur Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, M.U., Qiao, Z. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect. Eur. Phys. J. B 91, 42 (2018). https://doi.org/10.1140/epjb/e2017-80291-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80291-4

Keywords

Navigation