Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 − 5, 147) and monometallic Au and Ag low-energy surfaces

  • Anna L. Gould
  • C. Richard A. Catlow
  • Andrew J. Logsdail
Open Access
Regular Article
Part of the following topical collections:
  1. Topical issue: Shaping Nanocatalysts

Abstract

Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 − 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition.

Supplementary material

References

  1. 1.
    M. Haruta, Catal. Today 36, 153 (1997) CrossRefGoogle Scholar
  2. 2.
    M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    G. Blyholder, J. Phys. Chem. 68, 2772 (1964) CrossRefGoogle Scholar
  4. 4.
    A. Fielicke, G. von Helden, G. Meijer, B. Simard, D.M. Rayner, J. Phys. Chem. B 109, 23935 (2005) CrossRefGoogle Scholar
  5. 5.
    W.-L. Lim, T. Nowitzki, M. Necke, H. Schnars, P. Nickut, J. Biener, M.M. Biener, V. Zielasek, K. Al-Shamery, T. Klüner, M. Baumer, J. Phys. Chem. C 111, 445 (2007) CrossRefGoogle Scholar
  6. 6.
    J. Velasquez, III, B. Njegic, M.S. Gordon, M.A. Duncan, J. Phys. Chem. A 112, 1907 (2008) CrossRefGoogle Scholar
  7. 7.
    P. Atkins, Shriver and Atkins’ inorganic chemistry (Oxford University Press, USA, 2010) Google Scholar
  8. 8.
    C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry (Prentice Hall, 2005) Google Scholar
  9. 9.
    I. Chorkendorff, J. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics (Wiley-VCH, Germany, 2013) Google Scholar
  10. 10.
    B. Hammer, Y. Morikawa, J.K. Nørskov, Phys. Rev. Lett. 76, 2141 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1, 37 (2009) CrossRefGoogle Scholar
  12. 12.
    T. Wang, X.-X. Tian, Y.-W. Li, J. Wang, M. Beller, H. Jiao, ACS Catal. 4, 1991 (2014) CrossRefGoogle Scholar
  13. 13.
    A.J. Lupinetti, S. Fau, G. Frenking, S.H. Strauss, J. Phys. Chem. A 101, 9551 (1997) CrossRefGoogle Scholar
  14. 14.
    X. Wu, L. Senapati, S.K. Nayak, J. Phys. Chem. 117, 4010 (2002) CrossRefGoogle Scholar
  15. 15.
    X. Wu, L. Senapati, S. Nayak, A. Selloni, M. Hajaligol, J. Phys. Chem. 117, 4010 (2002) CrossRefGoogle Scholar
  16. 16.
    L. Jiang, Q. Xu, J. Phys. Chem. A 109, 1026 (2005) CrossRefGoogle Scholar
  17. 17.
    S.M. Rogers, C.R.A. Catlow, C.E. Chan-Thaw, D. Gianolio, E.K. Gibson, A.L. Gould, N. Jian, A.J. Logsdail, R.E. Palmer, L. Prati, N. Dimitratos, A. Villa, P.P. Wells, ACS Catal. 5, 4377 (2015) CrossRefGoogle Scholar
  18. 18.
    L. Molina, B. Hammer, Appl. Catal. A: Gen. 291, 21 (2005) CrossRefGoogle Scholar
  19. 19.
    M. Gajdoš, A. Eichler, J. Hafner, J. Phys.: Condens. Matter 16, 1141 (2004) ADSGoogle Scholar
  20. 20.
    B. Hammer, Y. Morikawa, J.K. Norskov, Phys. Rev. Lett. 76, 2141 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    F. Abild-Pedersen, M. Andersson, Surf. Sci. 601, 1747 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    K. Hadjiivanov, E. Vasileva, M. Kantcheva, D. Klissurski, Mater. Chem. Phys. 28, 367 (1991) CrossRefGoogle Scholar
  23. 23.
    K.I. Hadjiivanov, G.N. Vayssilov, Adv. Catal. 47, 307 (2002) Google Scholar
  24. 24.
    D.D. Ebbing, General Chemistry, 3rd ed. (Houghton Mifflin, 1990) Google Scholar
  25. 25.
    L.O. Paz-Borbon, R. Johnston, G. Barcaro, A. Fortunelli, Eur. Phys. J. D 52, 131 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    J.B. Davis, F. Baletto, R.L. Johnston, J. Phys. Chem. A 119, 9703 (2015) CrossRefGoogle Scholar
  27. 27.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    P. Laziæ, M. Alaei, N. Atodiresei, V. Caciuc, R. Brako, S. Blügel, Phys. Rev. B 81, 045401 (2010) ADSGoogle Scholar
  29. 29.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006) CrossRefGoogle Scholar
  30. 30.
    S. Grimme, J. Antony, S. Ehrlich, S. Krieg, J. Chem. Phys. 132, 154104 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    X. Ren, P. Rinke, M. Scheffler, Phys. Rev. B 80, 045402 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    F. Viñes, J.R.B. Gomes, F. Illas, Chem. Soc. Rev. 43, 4922 (2014) CrossRefGoogle Scholar
  33. 33.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  34. 34.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  36. 36.
    A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, J. Phys.: Condens. Matter 29, 273002 (2017) Google Scholar
  37. 37.
    A.J. Logsdail, R.L. Johnston, RSC Adv. 2, 5863 (2012) CrossRefGoogle Scholar
  38. 38.
    L. Vitosa, A.V. Rubana, H.L. Skrivera, J. Kollárb, Surf. Sci. 411, 186 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    M. Mavrikakis, P. Stoltze, J.K. Nørskov, Catal. Lett. 64, 101 (2000) CrossRefGoogle Scholar
  40. 40.
    F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, E. Skúlason, T. Bligaard, J.K. Nørskov, Phys. Rev. Lett. 99, 016105 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    A.L. Gould, C.J. Heard, A.J. Logsdail, C.R.A. Catlow, Phys. Chem. Chem. Phys. 16, 21049 (2014) CrossRefGoogle Scholar
  42. 42.
    M. Boronat, P. Concepción, A. Corma, J. Phys. Chem. C 113, 16772 (2009) CrossRefGoogle Scholar
  43. 43.
    A. Hussain, D.C. Ferré, J. Gracia, B. Nieuwenhuys, Surf. Sci. 603, 2734 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    F. Mehmood, A. Kara, T.S. Rahman, C.R. Henry, Phys. Rev. B 79, 075422 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    B. Pascucci, G.S. Otero, P.G. Belelli, F. Illas, M.M. Branda, J. Mol. Model. 20, 2448 (2014) CrossRefGoogle Scholar
  46. 46.
    C. Qin, L.S. Sremaniak, J.L. Whitten, J. Phys. Chem. B 110, 11272 (2006) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Anna L. Gould
    • 1
    • 2
  • C. Richard A. Catlow
    • 1
    • 2
    • 3
  • Andrew J. Logsdail
    • 1
    • 3
  1. 1.University College London, Kathleen Lonsdale Materials Chemistry, Department of ChemistryLondonUK
  2. 2.The U.K. Catalysis Hub, Research Complex at Harwell, Rutherford Appleton LaboratoryOxfordshireUK
  3. 3.Cardiff Catalysis Institute, School of Chemistry, Cardiff UniversityCardiffUK

Personalised recommendations