Cluster approximations for the TASEP: stationary state and dynamical transition

Regular Article

Abstract

We develop and test cluster approximations, which generalize simple mean-field by taking into account more and more local correlations, for the Totally Asymmetric Simple Exclusion Process with open boundaries. We consider in detail the pair and triplet approximations, discussing the improvements with respect to mean field in various steady state properties. Moreover, we analyze the recently discovered dynamical transition, describing how the spectrum of the relaxation matrix changes at the transition.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    N. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007)Google Scholar
  2. 2.
    K. Kawasaki, Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic, London, 1972), Vol. 2, p. 443Google Scholar
  3. 3.
    A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems (Elsevier, Amsterdam, 2011)Google Scholar
  4. 4.
    D. ben-Avraham, J. Köhler, Phys. Rev. A 45, 8358 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    M. Schrechenberg, A. Schadschneider, K. Nagel, N. Ito, Phys. Rev. E 51, 2939 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    N. Boccara, Modeling Complex Systems (Springer, New York, 2004)Google Scholar
  7. 7.
    H.A. Gutowitz, J.D. Victor, B.W. Knight, Physica D 28, 18 (1987)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Crisanti, G. Paladin, A. Vulpiani, Products of Random Matrices in Statistical Physics (Springer, Berlin, 1983)Google Scholar
  9. 9.
    J.-F. Gouyet, M. Plapp, W. Dieterich, P. Maass, Adv. Phys. 52, 523 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004)CrossRefGoogle Scholar
  11. 11.
    T. Petermann, P. De Los Rios, Phys. Rev. E 69, 066116 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    F. Schweitzer, L. Behera, Entropy 17, 7658 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R. Kikuchi, Phys. Rev. 124, 1682 (1961)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Kikuchi, Prog. Theor. Phys. Suppl. 35, 1 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    T. Ishii, Prog. Theor. Phys. Suppl. 115, 243 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    F. Ducastelle, Prog. Theor. Phys. Suppl. 115, 255 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    K. Wada, M. Kaburagi, Prog. Theor. Phys. Suppl. 115, 273 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    R. Kikuchi, Phys. Rev. 81, 988 (1951)ADSCrossRefGoogle Scholar
  19. 19.
    G. An, J. Stat. Phys. 52, 727 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    A. Pelizzola, J. Phys. A: Math. Gen. 38, R309 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Zamparo, A. Pelizzola, J. Stat. Mech. P12009 (2006)Google Scholar
  22. 22.
    M. Mézard, A. Montanari, Information, Physics and Computation (Oxford University Press, 2009)Google Scholar
  23. 23.
    I. Neri, D. Bollé, J. Stat. Mech. P08009 (2009)Google Scholar
  24. 24.
    Y. Kanoria, A. Montanari, Ann. Appl. Prob. 21, 1694 (2011)CrossRefGoogle Scholar
  25. 25.
    E. Aurell, H. Mahmoudi, J. Stat. Mech. P04014 (2011)Google Scholar
  26. 26.
    E. Aurell, H. Mahmoudi, Comm. Theor. Phys. 56, 157 (2011)CrossRefGoogle Scholar
  27. 27.
    E. Aurell, H. Mahmoudi, Phys. Rev. E 85, 031119 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A.Y. Lokhov, M. Mézard, L. Zdeborová, Phys. Rev. E 91, 012811 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    G. Del Ferraro, E. Aurell, Phys. Rev. E 92, 010102 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M. Shrestha, S.V. Scarpino, C. Moore, Phys. Rev. E 92, 022821 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    A. Pelizzola, Eur. Phys. J. B 86, 120 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    E. Dominguez, G. Del Ferraro, F. Ricci-Tersenghi, J. Stat. Mech. P033303 (2017)Google Scholar
  33. 33.
    A. Pelizzola, M. Pretti, J. Stat. Mech. 073406 (2017)Google Scholar
  34. 34.
    T. Chou, K. Mallick, R.K.P. Zia, Rep. Prog. Phys. 74, 116601 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    C.T. MacDonald, J.H. Gibbs, A.C. Pipkin, Biopolymers 6, 1 (1968)CrossRefGoogle Scholar
  36. 36.
    J. Krug, Phys. Rev. Lett. 67, 1882 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    B. Derrida, E. Domany, D. Mukamel, J. Stat. Phys. 69, 667 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    G. Schütz, E. Domany, J. Stat. Phys. 72, 277 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    B. Derrida, M.R. Evans, V. Hakim, V. Pasquier, J. Phys. A: Math. Gen. 26, 1493 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    B. Derrida, Phys. Rep. 301, 65 (1998)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    J. deGier, F.H.L. Essler, Phys. Rev. Lett. 95, 240601 (2005)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. deGier, F.H.L. Essler, J. Phys. A: Math. Theor. 41, 485002 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Proeme, R.A. Blythe, M.R. Evans, J. Phys. A: Math. Theor. 44, 035003 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    G.D. Smith, Numerical Solution of Partial Differential Equations (Clarendon Press, Oxford, 1978)Google Scholar
  45. 45.
    M. Dudziński, G.M. Schütz, J. Phys. A: Math. Gen. 33, 8351 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Z. Nagy, C. Appert, L. Santen, J. Stat. Phys. 109, 623 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    M.J.C. Gover, S. Barnett, IMA J. Numer. Anal. 5, 101 (1985)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Parmeggiani, T. Franosch, E. Frey, Phys. Rev. Lett. 90, 086601 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    A. Parmeggiani, T. Franosch, E. Frey, Phys. Rev. E 70, 046101 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienza Applicata e Tecnologia and CNISMTorinoItaly
  2. 2.INFN, Sezione di Torino, via Pietro Giuria 1TorinoItaly
  3. 3.Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi (CNR-ISC)RomaItaly

Personalised recommendations