Finite size and boundary effects in critical two-dimensional free-fermion models

Colloquium

Abstract

Here we will consider the finite-size scaling, finite-size corrections and boundary effects for the critical two-dimensional free-fermion models. A short review of significant achievements and possibilities is given. However, this review is still far from completeness. We derive the exact finite-size corrections for the set of free models of statistical mechanics, including Ising model, dimer model, resistor network and spanning tree model under different boundary conditions. We have shown that the partition functions of all these models can be written in terms of the only object, namely, the partition function with twisted boundary conditions.

Keywords

Solid State and Materials 

References

  1. 1.
    V. Privman, Finite-Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990), p. 518Google Scholar
  2. 2.
    M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, New York, 1983), Vol. 8, pp. 146–268Google Scholar
  3. 3.
    M.E. Fisher, in Critical Phenomena, Proceedings of the 1970 International School of Physics “Enrico Fermi”, Course 51, edited by M.S. Green (Academic, New York, 1971)Google Scholar
  4. 4.
    M. Fisher, M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems – Scaling and Quantum Effects (World Scientific, Singapore, 2000), p. 439Google Scholar
  6. 6.
    V. Privman, P.C. Hohenberg, A. Aharony, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, New York, 1991), Vol. 14, pp. 4–135Google Scholar
  7. 7.
    H.J. Brascamp, H. Kunz, J. Math. Phys. 15, 65 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    A.E. Ferdinand, M.E. Fisher, Phys. Rev. 185, 832 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    B. Kaufmann, Phys. Rev. 76, 1232 (1949)ADSCrossRefGoogle Scholar
  10. 10.
    M.C. McCoy, T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, 1973), p. 418Google Scholar
  11. 11.
    L. Onsager, Phys. Rev. 65, 117 (1944)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    P.W. Kasteleyn, Physica 27, 1209 (1961)ADSCrossRefGoogle Scholar
  13. 13.
    M.E. Fisher, Phys. Rev. 124, 1664 (1961)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H.N.V. Temperley, M.E. Fisher, Phil. Mag. 6, 1061 (1961)ADSCrossRefGoogle Scholar
  15. 15.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory, revised 2nd edn. (Taylor and Francis, London, 1994), p. 181Google Scholar
  16. 16.
    H.N.V. Temperley, in Combinatorics: Proceedings of the British Combinatorial Conference, London Mathematical Society Lecture Notes Series (Cambridge University Press, Cambridge, UK, 1974), Vol. 13, pp. 202–204Google Scholar
  17. 17.
    F.Y. Wu, J. Phys. A 37, 6653 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    H.W. Blöte, J.L. Cardy, M.P. Nightingale, Phys. Rev. Lett. 56, 742 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Cardy, Nucl. Phys. B 275, 200 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    C.-K. Hu, C.-Y. Lin, J.-A. Chen, Phys. Rev. Lett. 75, 193 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    C.-K. Hu, C.-Y. Lin, Phys. Rev. Lett. 77, 8 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    C.-K. Hu, J.-A. Chen, C.-Y. Lin, Physica A 266, 27 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    E.V. Ivashkevich, N.Sh. Izmailian, C.-K. Hu, J. Phys. A 35, 5543 (2002)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    N.Sh. Izmailian, K.B. Oganesyan, C.-K. Hu, Phys. Rev. E 65, 056132 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    X. Wu, N. Izmailian, W. Guo, Phys. Rev. E 86, 041149 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C.-K. Hu, J.-A. Chen, N.Sh. Izmailian, P. Kleban, Phys. Rev. E 60, 6491 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    W. Janke, R. Kenna, Phys. Rev. B 65, 064110 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kaneda, Y. Okabe, Phys. Rev. Lett. 86, 2134 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    W.T. Lu, F.Y. Wu, Phys. Rev. E 63, 026107 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    J. Salas, J. Phys. A 34, 1311 (2001)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    C.-K. Hu, E.V. Ivashkevich, C.Y. Lin, V.B. Priezzhev, Phys. Rev. Lett. 85, 4048 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    C.-K. Hu, C.-Y. Lin, Physica A 318, 92 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    N.Sh. Izmailian, C.-K. Hu, Phys. Rev. Lett. 86, 5160 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    N.Sh. Izmailian, Y.-N. Yeh, Nucl. Phys. B 814, 573 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    N.Sh. Izmailian, C.-K. Hu, Nucl. Phys. B 808, 613 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    N.Sh. Izmailian, Nucl. Phys. B 839, 446 (2010)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    N.Sh. Izmailian, Phys. Rev. E 84, 051109 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    N.Sh. Izmailian, Nucl. Phys. B 854, 184 (2012)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    A. Poghosyan, R. Kenna, N. Izmailian, EPL 111, 60010 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    N.Sh. Izmailian, P. Ruelle, C.-K. Hu, Phys. Lett. B 711, 71 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    N.Sh. Izmailian, C.-K. Hu, Phys. Rev. E 87, 012110 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    M.-C. Wu, C.-K. Hu, N.Sh. Izmailian, Phys. Rev. E 67, 065103(R) (2003)ADSCrossRefGoogle Scholar
  43. 43.
    J. Salas, J. Phys. A 35, 1833 (2002)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    N.Sh. Izmailian, C.-K. Hu, Phys. Rev. E 65, 036103 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    N.Sh. Izmailian, C.-K. Hu, Phys. Rev. E. 76, 041118 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    N.Sh. Izmailian, V.B. Priezzhev, P. Ruelle, C.-K. Hu, Phys. Rev. Lett. 95, 260602 (2005)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    N.Sh. Izmailian, V.B. Priezzhev, P. Ruelle, SIGMA 3, 001 (2007)Google Scholar
  48. 48.
    N.Sh. Izmailian, K.B. Oganesyan, C.-K. Hu, Phys. Rev. E 67, 066114 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    J.W. Essam, F.Y. Wu, J. Phys. A: Math. Theor. 42, 025205 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    N.Sh. Izmailian, K.B. Oganesyan, M.-C. Wu, C.-K. Hu, Phys. Rev. E 73, 016128 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    R.J. Baxter, J. Phys. A: Math. Theor. 50, 014001 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    A. Hucht, J. Phys. A: Math. Theor. 50, 065201 (2017)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    A. Hucht, J. Phys. A: Math. Theor. 50, 265205 (2017)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    X. Wu, Phys. Rev. E 95, 052101 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    E. Vernier, J.L. Jacobsen, J. Phys. A: Math. Theor. 45, 045003 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    H.O. Martin, H.J. de Vega, Phys. Rev. B 32, 5959 (1985)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    J. de Gier, F.H.L. Essler, J. Stat. Mech. 2006, P12011 (2006)CrossRefGoogle Scholar
  58. 58.
    J. Sirker, M. Bortz, J. Stat. Mech. 2006, P01007 (2006)CrossRefGoogle Scholar
  59. 59.
    A.M. Povolotsky, V.B. Priezzhev, C.-K. Hu, J. Stat. Phys. 111, 1149 (2003)CrossRefGoogle Scholar
  60. 60.
    X. Wu, N. Izmailian, W. Guo, Phys. Rev. E 87, 022124 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    X. Wu, R. Zheng, N. Izmailian, W. Guo, J. Stat. Phys. 155, 106 (2014)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    X. Wu, N. Izmailian, Phys. Rev. E 91, 012102 (2015)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    V. Privman, M. Fisher, Phys. Rev. B 30, 322 (1984)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    P. Kleban, I. Vassileva, J. Phys. A 24, 3407 (1991)ADSCrossRefGoogle Scholar
  65. 65.
    I. Affleck, Phys. Rev. Lett. 56, 746 (1986)ADSCrossRefGoogle Scholar
  66. 66.
    J.L. Cardy, I. Peschel, Nucl. Phys. B 300, 377 (1988)ADSCrossRefGoogle Scholar
  67. 67.
    Y. Imamura, H. Isono, Y. Matsuo, Prog. Theor. Phys. 115, 979 (2006)ADSCrossRefGoogle Scholar
  68. 68.
    M. Caselle, M. Hasenbusch, A. Pelissetto, E. Vivari, J. Phys. A 35, 4861 (2002)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    N.Sh. Izmailian, R. Kenna, Phys. Rev. E 84, 021107 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    N.Sh. Izmailian, R. Kenna, Phys. Rev. E 91, 022129 (2015)ADSCrossRefGoogle Scholar
  71. 71.
    N.Sh. Izmailian, M.-C. Huang, Phys. Rev. E 82, 011125 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    N.Sh. Izmailian, R. Kenna, Condens. Matter Phys. 17, 33008 (2014)CrossRefGoogle Scholar
  73. 73.
    J. Salas, A.D. Sokal, J. Stat. Phys. 88, 567 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    J.L. Cardy, Nucl. Phys. B 270, 186 (1986)ADSCrossRefGoogle Scholar
  75. 75.
    A.B. Zamolodchikov, Sov. J. Nucl. Phys. 46, 1090 (1987)Google Scholar
  76. 76.
    M. Henkel, Conformal Invariance and Critical Phenomena (Springer Verlag, Heidelberg, 1999), p. 417Google Scholar
  77. 77.
    P. Fendley, R. Moessner, S.L. Sondhi, Phys. Rev. B 66, 214513 (2002)ADSCrossRefGoogle Scholar
  78. 78.
    N. Izmailian, R. Kenna, W. Guo, X. Wu, Nucl. Phys. B 884, 157 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    B. Duplantier, F. David, J. Stat. Phys. 51, 327 (1988)ADSCrossRefGoogle Scholar
  80. 80.
    J.G. Brankov, V.B. Priezzhev, J. Phys. A 25, 4297 (1992)ADSCrossRefGoogle Scholar
  81. 81.
    Y. Okabe, K. Kaneda, M. Kikuchi, C.-K. Hu, Phys. Rev. E 59, 1585 (1999)ADSCrossRefGoogle Scholar
  82. 82.
    T.W. Liaw, M.C. Huang, Y.L. Chou, S.C. Lin, F.Y. Li, Phys. Rev. E 73, 055101(R) (2006)ADSCrossRefGoogle Scholar
  83. 83.
    R.H. Fowler, G.S. Rushbrooke, Trans. Faraday Soc. 33, 1272 (1937)CrossRefGoogle Scholar
  84. 84.
    R.E. Hartwig, J. Math. Phys. 7, 286 (1966)ADSCrossRefGoogle Scholar
  85. 85.
    M.E. Fisher, J. Stephenson, Phys. Rev. 132, 1411 (1963)ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    F.Y. Wu, Phys. Rev. 168, 539 (1967)ADSCrossRefGoogle Scholar
  87. 87.
    M.E. Fisher, J. Math. Phys. 7, 1776 (1966)ADSCrossRefGoogle Scholar
  88. 88.
    H. Cohn, N. Elkies, J. Propp, Duke Math. J. 85, 117 (1996)MathSciNetCrossRefGoogle Scholar
  89. 89.
    V. Korepin, P. Zinn-Justin, J. Phys. A 33, 7053 (2000)ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    D.S. Rokhsar, S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988)ADSCrossRefGoogle Scholar
  91. 91.
    A.E. Ferdinand, J. Math. Phys. 8, 2332 (1967)ADSCrossRefGoogle Scholar
  92. 92.
    S.M. Bhattacharjee, J.F. Nagle, Phys. Rev. A 31, 3199 (1985)ADSCrossRefGoogle Scholar
  93. 93.
    J.G. Brankov, V.B. Priezzhev, Nucl. Phys. B 400, 633 (1993)ADSCrossRefGoogle Scholar
  94. 94.
    W.T. Lu, F.Y. Wu, Phys. Lett. A 259, 108 (1999)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    W.T. Lu, F.Y. Wu, Phys. Lett. A 293, 235 (2002)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    F.Y. Wu, W.-J. Tzeng, N.Sh. Izmailian, Phys. Rev. E 83, 011106 (2011)ADSCrossRefGoogle Scholar
  97. 97.
    N. Allegra, J.Y. Fortin, Phys. Rev. E 89, 062107 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    N. Allegra, Nucl. Phys. B 894, 685 (2015)ADSCrossRefGoogle Scholar
  99. 99.
    D. Cimasoni, A.M. Pham, JSTAT 103101 (2016)Google Scholar
  100. 100.
    G. Kirchhoff, Ann. Phys. Chem. 148, 497 (1847)ADSCrossRefGoogle Scholar
  101. 101.
    W.J. Tzeng, F.Y. Wu, Appl. Math. Lett. 13, 19 (2000)MathSciNetCrossRefGoogle Scholar
  102. 102.
    V. Privman, Phys. Rev. B 38, 9261 (1988)ADSCrossRefGoogle Scholar
  103. 103.
    R.E. Aitchison, Am. J. Phys. 32, 566 (1964)ADSCrossRefGoogle Scholar
  104. 104.
    P.G. Doyle, J.L. Snell, Random Walks and Electric Networks, The Carus Mathematical Monograph, Series 22 (The Mathematical Association of America, USA, 1984), pp. 83–149Google Scholar
  105. 105.
    G. Venezian, Am. J. Phys. 62, 1000 (1994)ADSCrossRefGoogle Scholar
  106. 106.
    B. Derrida, J. Vannimenus, J. Phys. A 15, L557 (1982)ADSCrossRefGoogle Scholar
  107. 107.
    A.B. Harris, T.C. Lubensky, Phys. Rev. B 35, 6964 (1987)ADSCrossRefGoogle Scholar
  108. 108.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)ADSCrossRefGoogle Scholar
  109. 109.
    L. Lovasz, Random Walks on Graphs: A Survey in Combinatorics, Paul Erdois Eighty, edited by D. Miklos, V.T. Sos, T. Szonyi (Janos Bolyai Mathematical Society, Budepest, 1996), Vol. 2, pp. 353–398Google Scholar
  110. 110.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001), p. 312Google Scholar
  111. 111.
    S. Katsura, T. Morita, S. Inawashiro, T. Horiguchi, Y. Abe, J. Math. Phys. 12, 892 (1971)ADSCrossRefGoogle Scholar
  112. 112.
    J.H. Asad, A. Sakaji, R.S. Hijjawi, J.M. Khalifeh, Eur. Phys. J. B 52, 365 (2006)ADSCrossRefGoogle Scholar
  113. 113.
    J. Cserti, Am. J. Phys. 68, 896 (2000)ADSCrossRefGoogle Scholar
  114. 114.
    M.A. Jafarizadeh, R. Sufiani, S. Jafarizadeh, J. Phys. A: Math. Theor. 40, 4949 (2007)ADSCrossRefGoogle Scholar
  115. 115.
    E. Domany, W. Kinzel, Phys. Rev. Lett. 53, 311 (1984)ADSMathSciNetCrossRefGoogle Scholar
  116. 116.
    B. Ballobás, Modern Graph Theory (Springer, New York, 1998), p. 394Google Scholar
  117. 117.
    F. Kelly, Reversibility and Stochastic Networks (Wiley, New York, 1979), p. 230Google Scholar
  118. 118.
    J.G. Kemeny, J.L. Snell, A.W. Knapp, Denumerable Markov Chains (Springer-Verlag, New York, 1976), p. 484Google Scholar
  119. 119.
    N.Sh. Izmailian, R. Kenna, F.Y. Wu, J. Phys. A: Math. Theor. 47, 035003 (2014)ADSCrossRefGoogle Scholar
  120. 120.
    N.Sh. Izmailian, R. Kenna, J. Chin. Phys. 53, 040703 (2015)Google Scholar
  121. 121.
    J.W. Essam, N.Sh. Izmailian, R. Kenna, Z.-Z. Tan, R. Soc. Open Sci. 2, 140420 (2015)MathSciNetCrossRefGoogle Scholar
  122. 122.
    J.W. Essam, Z.-Z. Tan, F.Y. Wu, Phys. Rev. E 90, 032130 (2014)ADSCrossRefGoogle Scholar
  123. 123.
    Z.-Z. Tan, J.W. Essam, F.Y. Wu, Phys. Rev. E 90, 012130 (2014)ADSCrossRefGoogle Scholar
  124. 124.
    Z.-Z. Tan, L. Zhou, J.-H. Yang, J. Phys. A: Math. Theor. 46, 195202 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Yerevan Physics InstituteYerevanArmenia

Personalised recommendations