Pairing in doped inversion-symmetric Weyl semimetals: a finite temperature analysis from Thouless criterion

  • Beibing HuangEmail author
Regular Article


In doped Weyl semimetal with inversion symmetry, the two pairing states, i.e., the zero momentum BCS pairing and the finite momentum Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing are possible in principle. In this paper we use the standard Thouless criterion for the onset of pairings to investigate the leading pairing instability at the finite temperature. Our results suggest that both BCS and FFLO instabilities are possible depending on the on-site attractive interaction. The competition between the BCS pairing and FFLO pairing is driven by the mutual suppression between density of state near the Fermi surface and finite energy band structure in the whole Brillouin zone. For small and intermediate interaction, the former dominates and supports BCS pairing, while for strong interaction, the latter wins and favors FFLO pairing. We expect our results at the finite temperature can provide some important message to identify the true ground state.


Solid State and Materials 


  1. 1.
    Z. Fang, N. Nagaosa, K.S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, K. Terakura, Science 302, 92 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    H. Weng, C. Fang, Z. Fang, B.A. Bernevig, X. Dai, Phys. Rev. X 5, 011029 (2015)Google Scholar
  3. 3.
    S.-M. Huang et al., Nat. Commun. 6, 7373 (2015)CrossRefGoogle Scholar
  4. 4.
    S.-Y. Xu et al., Science 349, 613 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    B.Q. Lv et al., Phys. Rev. X 5, 031013 (2015)Google Scholar
  6. 6.
    S.-Y. Xu et al., Nat. Phys. 11, 748 (2015)CrossRefGoogle Scholar
  7. 7.
    S.-Y. Xu et al., Sci. Adv. 1, e1501092 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    N. Xu et al., Nat. Commun. 7, 11006 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Wang, Y. Zheng, Z. Shen, Y. Zhou, X. Yang, Y. Li, C. Feng, Z.-A. Xu, Phys. Rev. B 93, 121112 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Burkov, M.D. Hook, L. Balents, Phys. Rev. B 84, 235126 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G.B. Halász, L. Balents, Phys. Rev. B 85, 035103 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    C. Fang, M.J. Gilbert, X. Dai, B.A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    G.Y. Cho, arXiv:1110.1939
  17. 17.
    H. Jiang, Z. Qiao, H. Liu, Q. Niu, Phys. Rev. B 85, 045445 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    X. Kong, Y. Liang, S.-P. Kou, Phys. Rev. A 95, 033629 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    F.-Y. Li, X. Luo, X. Dai, Y. Yu, F. Zhang, G. Chen, Phys. Rev. B 94, 121105 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Li, H.-Q. Wang, D.-W. Zhang, S.-L. Zhu, D.-Y. Xing, Phys. Rev. A 94, 043617 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    W.-Y. He, S. Zhang, K.T. Law, Phys. Rev. A 94, 013606 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    J.-H. Jiang, Phys. Rev. A 85, 033640 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    T. Meng, L. Balents, Phys. Rev. B 86, 054504 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    G.Y. Cho, J.H. Bardarson, Y.-M. Lu, J.E. Moore, Phys. Rev. B 86, 214514 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    H. Wei, S.-P. Chao, V. Aji, Phys. Rev. B 89, 014506 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    G. Bednik, A.A. Zyuzin, A.A. Burkov, Phys. Rev. B 92, 035153 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    T. Zhou, Y. Gao, Z.D. Wang, Phys. Rev. B 93, 094517 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    T. Das, Phys. Rev. B 88, 035444 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    W. Chen, L. Jiang, R. Shen, L. Sheng, B.G. Wang, D.Y. Xing, Europhys. Lett. 103, 27006 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    U. Khanna, A. Kundu, S. Pradhan, S. Rao, Phys. Rev. B 90, 195430 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    A.I. Larkin, Y.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964)Google Scholar
  33. 33.
    R. Casalbuoni, G. Narduli, Rev. Mod. Phys. 76, 263 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    G.E. Volovik, in Universe in a Helium Droplet (Oxford University Press, 2003)Google Scholar
  35. 35.
    B. Lu, K. Yada, M. Sato, Y. Tanaka, Phys. Rev. Lett. 114, 096804 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    S.-K. Jian, Y.-F. Jiang, H. Yao, Phys. Rev. Lett. 114, 237001 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 78, 195125 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kitaev, AIP Conf. Proc. 1134, 22 (2009)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    X.-J. Liu, Phys. Rev. A 88, 043607 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    T. Zhou, Y. Gao, Z.D. Wang, Sci. Rep. 4, 5218 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsYancheng Institute of TechnologyYanchengP.R. China

Personalised recommendations