Bath-induced correlations in an infinite-dimensional Hilbert space

Regular Article
Part of the following topical collections:
  1. Topical issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook

Abstract

Quantum correlations between two free spinless dissipative distinguishable particles (interacting with a thermal bath) are studied analytically using the quantum master equation and tools of quantum information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown. We show that for temperature T> 0 the time-evolution of the reduced density matrix cannot be written as the direct product of two independent particles. We have found a time-scale that characterizes the time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the induced correlations among particles. We have supported the quantum character of the correlations by analyzing the geometric quantum discord.

References

  1. 1.
    L.E. Reichl, A Modern Course in Statistical Mechanics (E. Arnold Publ. Ltd., Univ. of Texas Press, 1980)Google Scholar
  2. 2.
    A.E. Allahverdayn et al., Phys. Rep. 525, 1 (2013)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics (Springer Verlag, Berlin, 1987), Vol. 286Google Scholar
  4. 4.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000); and references thereinGoogle Scholar
  5. 5.
    M.I. Kolobov, C. Fabre, Phys. Rev. Lett. 85, 3789 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Caves, Phys. Rev. D 23, 1693 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007)Google Scholar
  8. 8.
    V. Kendon, Math. Struct. Comput. Sci. 17, 1169 (2006)MathSciNetGoogle Scholar
  9. 9.
    D. Braun, Phys. Rev. Lett. 89, 277901 (2002)CrossRefGoogle Scholar
  10. 10.
    K. Ann, G. Jaeger, Phys. Rev. A 76, 044101 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    T. Yu, J.H. Eberly, Phys. Rev. B 68, 165322 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    D.P.S. McCutcheon, A. Nazir, S. Bose, A.J. Fisher, Phys. Rev. A 80, 022337 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yu, J.H. Eberly, Phys. Rev. B 66, 193306 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Storcz, U. Hartmann, S. Kohler, F.K. Wilhelm, Phys. Rev. B 72, 235321 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss, Chem. Phys. Lett. 478, 234 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Aharonov et al., Phys. Rev. A 48, 1687 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    N.G. van Kampen, J. Stat. Phys. 78, 299 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    O. Mülken, A. Blumen, Phys. Rev. E 71, 036128 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M.O. Cáceres, M. Nizama, J. Phys. A: Math. Theor. 43, 455306 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Nizama, M.O. Cáceres, Physica A 400, 31 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Nizama, M.O. Cáceres, Physica A 392, 6155, (2013)ADSCrossRefGoogle Scholar
  23. 23.
    F. Zähringer et al., Phys. Rev. Lett. 104, 100503 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Schreiber et al., Phys. Rev. Lett. 106, 180403 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Broome et al., Phys. Rev. Lett. 104, 153602 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    H. Schmitz et al., Phys. Rev. Lett. 103, 090504 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    M. Karski et al., Science 325, 174 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    J. Kempe, Contemp. Phys. 44, 307 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    M. Nizama, M.O. Cáceres, J. Phys. A: Math. Theor. 45, 335303 (2012)CrossRefGoogle Scholar
  30. 30.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)ADSCrossRefGoogle Scholar
  31. 31.
    M.O. Cáceres, Non-equilibrium Statistical Physics with Application to Disordered Systems (Springer, 2017), ISBN 978-3-319-51552-6Google Scholar
  32. 32.
    M.O. Cáceres, Eur. Phys. J. B 90, 74 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    This free Hamiltonian was also presented in the context of quantum walk, see: C. Benedetti, F. Buscemi, P. Bordone, Phys. Rev. A 85, 42314 (2012)Google Scholar
  34. 34.
    T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M.B. Pozzobom, J. Maziero, arXiv:1605.04746 [quant-ph], 2016
  36. 36.
    B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    A.S.M. Hassan, B. Lari, P.S. Joag, Phys. Rev. A 85, 0243202 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Rana, P. Parashar, arXiv:1201.5969v2 [quant-ph], 2012
  39. 39.
    S. Vinjanampathy, A.R.P. Rau, J. Phys. A 45, 095303 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    P. Zanardi et al., J. Phys. A: Math. Gen. 35, 7947 (2002)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    M. Hillery et al., Phys. Rep. 106, 121 (1984)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    W.K. Wooters, Ann. Phys. (NY) 176, 1 (1987)ADSCrossRefGoogle Scholar
  45. 45.
    C. Miquel et al., Phys. Rev. A 65, 62309 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    M. Hinarejos et al., New J. Phys. 14, 103009 (2012)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Física, Universidad Nacional del ComahueNeuquénArgentina
  2. 2.Centro Atómico Bariloche, CNEA, Instituto Balseiro and CONICETBarilocheArgentina

Personalised recommendations