Extinction phase transitions in a model of ecological and evolutionary dynamics

Regular Article

Abstract

We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to 3 × 107 organisms and 105 generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Euler, Introductio in analysin infinitorum (Lausannae, 1748)Google Scholar
  2. 2.
    D. Bernoulli, in Mém. Math. Phys. Acad. Roy. Sci. Paris (1760), pp. 1–45Google Scholar
  3. 3.
    M. Bartlett, Stochastic population models in ecology and epidemiology (Wiley, New York, 1961)Google Scholar
  4. 4.
    T. Britton, Math. Biosci. 225, 24 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. Ovaskainen, B. Meerson, Trends Ecol. Evol. 25, 643 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999)Google Scholar
  7. 7.
    H. Hinrichsen, Adv. Phys. 49, 815 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    G. Odor, Rev. Mod. Phys. 76, 663 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Henkel, H. Hinrichsen, S. Lübeck, Non-equilibrium phase transitions. Vol 1: Absorbing phase transitions (Springer, Dordrecht, 2008)Google Scholar
  10. 10.
    E.G. Leigh Jr., J. Theor. Biol. 90, 213 (1981)CrossRefGoogle Scholar
  11. 11.
    R. Lande, Am. Nat. 142, 911 (1993)CrossRefGoogle Scholar
  12. 12.
    W. Kinzel, Z. Phys. B 58, 229 (1985)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I. Jensen, Phys. Rev. Lett. 77, 4988 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    I. Jensen, J. Phys. A 38, 1441 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Vazquez, J.A. Bonachela, C. López, M.A. Muñoz, Phys. Rev. Lett. 106, 235702 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    T. Vojta, J.A. Hoyos, Europhys. Lett. 112, 30002 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    H. Barghathi, T. Vojta, J.A. Hoyos, Phys. Rev. E 94, 022111 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    N. Dees, S. Bahar, PLoS ONE 5, e11952 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A.D. Scott, D.M. King, N. Maric, S. Bahar, Europhys. Lett. 102, 68003 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Scott, D.M. King, S.W. Ordway, S. Bahar, unpublishedGoogle Scholar
  21. 21.
    P. Grassberger, A. de la Torre, Ann. Phys. (NY) 122, 373 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    R. Dickman, Phys. Rev. E 60, R2441 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    T. Vojta, A. Farquhar, J. Mast, Phys. Rev. E 79, 011111 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    H.K. Janssen, Z. Phys. B 42, 151 (1981)ADSCrossRefGoogle Scholar
  25. 25.
    P. Grassberger, Z. Phys. B 47, 365 (1982)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Janssen, K. Oerding, F. van Wijland, H. Hilhorst, Eur. Phys. J. B 7, 137 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    H. Hinrichsen, M. Howard, Eur. Phys. J. B 7, 635 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    T. Vojta, R. Dickman, Phys. Rev. E 93, 032143 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    A.K. Ibrahim, H. Barghathi, T. Vojta, Phys. Rev. E 90, 042132 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    A.B. Harris, J. Phys. C 7, 1671 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    J. Hooyberghs, F. Iglói, C. Vanderzande, Phys. Rev. Lett. 90, 100601 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    J. Hooyberghs, F. Iglói, C. Vanderzande, Phys. Rev. E 69, 066140 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    M. Dickison, T. Vojta, J. Phys. A 38, 1199 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    T. Vojta, Phys. Rev. E 86, 051137 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J.J. Alonso, M.A. Muñoz, Europhys. Lett. 56, 485 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of PhysicsUniversity of VermontBurlingtonUSA

Personalised recommendations