Fractal and multifractal analysis of complex networks: Estonian network of payments

  • Stephanie Rendón de la Torre
  • Jaan Kalda
  • Robert Kitt
  • Jüri Engelbrecht
Regular Article

Abstract

Complex networks have gained much attention from different areas of knowledge in recent years. Particularly, the structures and dynamics of such systems have attracted considerable interest. Complex networks may have characteristics of multifractality. In this study, we analyze fractal and multifractal properties of a novel network: the large scale economic network of payments of Estonia, where companies are represented by nodes and the payments done between companies are represented by links. We present a fractal scaling analysis and examine the multifractal behavior of this network by using a sandbox algorithm. Our results indicate the existence of multifractality in this network and consequently, the existence of multifractality in the Estonian economy. To the best of our knowledge, this is the first study that analyzes multifractality of a complex network of payments.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    S. Furuya, K. Yakubo, Phys. Rev. E 84, 036118 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    Y.Q. Song, J.L. Liu, Z.G. Yu, B.G. Li, Sci. Rep. 5, 17628 (2015) ADSCrossRefGoogle Scholar
  3. 3.
    G. Boffetta, A. Mazzino, A. Vulpiani, J. Phys. A: Math. Theor. 41, 363001 (2008) CrossRefGoogle Scholar
  4. 4.
    B. Lashermes, S. Roux, P. Abry, S. Jaffard, Eur. Phys. J. B 61, 201 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    E. Bacry, J. Delour, J.F. Muzy, Physica A 299, 84 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    B.B. Mandelbrot, L. Calvet, A. Fisher, Cowles Foundation, Discussion paper 1164, 1997 Google Scholar
  8. 8.
    R. Lopes, N. Betrouni, Med. Image Anal. 13, 634 (2009) CrossRefGoogle Scholar
  9. 9.
    Z.G. Yu, V.V Anh, K.S. Lau, Phys. Rev. E 64, 31903 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Gagnon, S. Lovejoy, D. Schertzer, Nonlinear Process. Geophys. 13, 541 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    D. Schertzer, S. Lovejoy, J. Appl. Meteorol. 36, 1296 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Anh, K.S. Lau, Z.G. Yu, Phys. Rev. E 66, 031910 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    Z.G. Yu, V.V. Anh, K.S. Lau, Phys. Rev. E 68, 021913 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    L.Q. Zhou, Z.G. Yu, J.Q. Deng, V.V. Anh, S.C. Long, J. Theor. Biol. 232, 559 (2005) CrossRefGoogle Scholar
  15. 15.
    J.W. Kantelhardt, E.K. Bunde, D. Rybski, P. Braun, A. Bunde, S. Havlin, J. Geophys. Res. 111, D01106 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    D. Veneziano, A. Langousis, P. Furcolo, Water Resour. Res. 42, W06D15 (2006) CrossRefGoogle Scholar
  17. 17.
    V. Venugopal, S.G. Roux, E.F. Georgiou, A. Arneodo, Water Resour. Res. 42, W06D14 (2006) CrossRefGoogle Scholar
  18. 18.
    Z.G. Yu, V.V. Anh, Y. Wang, D. Mao, J. Wanliss, J. Geophys. Res. 115, A10219 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    H. Inaoka, T. Nimoniya, K. Taniguchi, T. Shimizu, H. Takayasu, Bank of Japan, Working papers, 2004 Google Scholar
  20. 20.
    Y. Lu, J. Tang, Environ. Plan. B: Plan. Des. 31, 6 (2004) CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, X. Li, Eur. Phys. J. B 88, 61 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    F.M. Siokis, Physica A 395, 283 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    A.I. Olemskoi, V.N. Borisyuk, I.A. Shuda, A.A. Bagdasaryan, J. Nano-Electron. Phys. 1, 3 (2009) Google Scholar
  24. 24.
    O. Pont, A. Turiel, C.J. Pérez-Vicente, Physica A 388, 10 (2009) CrossRefGoogle Scholar
  25. 25.
    W.X. Zhou, Z.Q. Yiang, D. Sornette, Physica A 375, 741 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    G. Palla, I. Derényi, I. Farkas, T. Vicsek, Nature 435, 814 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    L.K. Gallos, C. Song, S. Havlin, H.A. Makse, Physica A 386, 686 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    C.M. Schneider, T.A. Kesselring, J.S. Andrade, H.J. Herrmann, Phys. Rev. E 86, 016707 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    V.M. Eguiluz, E. Hernández-García, O. Piro, K. Klemm, Phys. Rev. E 68, 055102 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    C. Song, L.K. Gallos, S. Havlin, H.A. Makse, J. Stat. Mech.: Theor. Exp. 3, 4673 (2007) Google Scholar
  31. 31.
    C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    B.G. Li, Z.G. Yu, Y. Zhou, J. Stat. Mech.: Theor. Exp. 2, P02020 (2014) CrossRefGoogle Scholar
  33. 33.
    J.L. Liu, Z.G. Yu, V. Anh, Chaos 25, 023103 (2015) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D.J. Wei et al., Sci. Rep. 3, 3049 (2013) CrossRefGoogle Scholar
  35. 35.
    D.L. Wang, Z.G. Yu, V. Anh, Chin. Phys. B 21, 080504 (2012) ADSCrossRefGoogle Scholar
  36. 36.
    Z.G. Yu, H. Zhang, D.W. Huang, Y. Lin, V. Anh, J. Stat. Mech.: Theor. Exp. 2016, 033206 (2016) CrossRefGoogle Scholar
  37. 37.
    J.L. Liu, J. Wang, Z.G. Yu, X.H. Xie, Sci. Rep. 7, 45588 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    J. Feder, Fractals (Plenum, New York, 1988) Google Scholar
  39. 39.
    J.S. Kim, K.I. Goh, G. Salvi, E. Oh, B. Kahng, D. Kim, Phys. Rev. E 75, 016110 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    D.H. Kim, J.D. Noh, H. Jeong, Phys. Rev. E 70, 046126 (2004) ADSCrossRefGoogle Scholar
  41. 41.
    K.-I. Goh, G. Salvi, B. Kahng, D. Kim, Phys. Rev. Lett. 96, 018701 (2006) ADSCrossRefGoogle Scholar
  42. 42.
    A. Gibbons, Algorithmic graph theory (Cambridge University Press, UK, 1985) Google Scholar
  43. 43.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabási, Nature 407, 651 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    B.B. Mandelbrot, The fractal geometry of nature (Academic Press, New York, 1983) Google Scholar
  45. 45.
    S. Rendón de la Torre, J. Kalda, R. Kitt, J. Engelbrecht, Chaos Solitons Fractals 90, 18 (2016) ADSCrossRefGoogle Scholar
  46. 46.
    T. Tél, A. Fülöp, A. Vicsek, Physica A 159, 155 (1989) ADSCrossRefGoogle Scholar
  47. 47.
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Science, Department of Cybernetics, Tallinn University of TechnologyTallinnEstonia
  2. 2.Swedbank ASTallinnEstonia

Personalised recommendations