Abstract
We present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
L.D. Landau, Phys. Z. Sowjet. 3, 664 (1933)
H. Fröhlich, Proc. R. Soc. Lond. A 215, 291 (1952)
T. Holstein, Ann. Phys. 8, 325 (1959)
T. Holstein, Ann. Phys. 8, 343 (1959)
A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Rev. Mod. Phys. 60, 781 (1988)
N.K. Voulgarakis, G.P. Tsironis, Phys. Rev. B 63, 014302 (2000)
L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, Phys. Rev. B 68, 104301 (2003)
A.S. Davydov, Phys. Scripta 20, 387 (1979)
A.C. Scott, Phys. Rep. 217, 1 (1992)
G.N. Chuev, V.D. Lakhno, J. Theor. Biol. 163, 51 (1993)
E.M. Conwell, S.V. Rakhmanova, Proc. Natl. Acad. Sci. USA 97, 4556 (2000)
L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, J. Phys. Condens. Matter 20, 255242 (2008)
L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, J. Phys. Condens. Matter 22, 155105 (2010)
L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, Phys. Rev. E 89, 062905 (2014)
A.S. Davydov, Sov. Phys. Usp. 25, 898 (1982)
A.S. Davydov, Solitons in Molecular Systems, 2nd ed. (Kluwer Academic Publishers, 1991)
J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Phys. Rev. B 30, 4703 (1984)
A.L. Lehninger, D.L. Nelson, M.M. Cox, Principles of Biochemistry, 2nd ed. (Worth Publishers, New York, 1993)
W. Barford, J. Chem. Phys. 126, 134905 (2007)
D.N. Langelaan, M. Wieczorek, C. Blouin, J.K. Rainey, J. Chem. Inf. Model. 50, 2213 (2010)
K.G. Brown, S.C. Erfurth, E.W. Small, W.L. Peticolas, Proc. Natl. Acad. Sci. USA 69, 1467 (1972)
K.-C. Chou, Biochem. J. 209, 573 (1983)
K.-C. Chou, Biophys. J. 45, 881 (1984)
D.S. Lemons, A. Gythiel, Am. J. Phys. 65, 1079 (1997)
T. Schlick, Molecular Modeling and Simulation, 2nd ed. (Springer, 2010)
D. Hennig, Phys. Rev. E 64, 041908 (2001)
G. Kalosakas, S. Aubry, G.P. Tsironis, Phys. Rev. B 58, 3094 (1998)
M. Luckey, Membrane Structural Biology, 2nd ed. (Newblock CUP, 2014)
K. Bugge, E. Papaleo, G.W. Haxholm, J.T.S. Hopper, C.V. Robinson, J.G. Olsen, K. Lindorff-Larsen, B.B. Kragelund, Nat. Commun. 7, 11578 (2016)
J. Ma, M. Yoshimura, E. Yamashita, A. Nakagawa, A. Ito, T. Tsukihara, J. Mol. Biol. 338, 103 (2004)
J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999)
K. Cheng, H.C. Haspel, M.L. Vallano, B. Osotimehin, M. Sonenberg, J. Membr. Biol. 56, 191 (1980)
L. McCaughan, S. Krimm, Science 207, 1481 (1980)
R.M. Hochmuth, C.A. Evans, H.C. Wiles, J.T. McCown, Science 220, 101 (1983)
D.L. Mobley, K.A. Dill, J.D. Chodera, J. Phys. Chem. B 112, 938 (2008)
V.Z. Spassov, L. Yan, Prot. Sci. 17, 1955 (2008)
S. Vicatos, M. Roca, A. Warshel, Proteins 77, 670 (2009)
L. Li, C. Li, Z. Zhang, E. Alexov, J. Chem. Theory Comput. 9, 2126 (2013)
IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), 2012, doi: 10.1109/IEEESTD.2012.6392842
IEEE Std 521-2002 (Revision of IEEE Std 521-1984), 2003, doi: 10.1109/IEEESTD.2003.94224
S. Lönn, U. Forssén, P. Vecchia, A. Ahlbom, M. Feychting, Occup. Environ. Med. 61, 769 (2004)
L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, Phys. Rev. E 70, 031914 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Luo, J., Piette, B.M.A.G. A generalised Davydov-Scott model for polarons in linear peptide chains. Eur. Phys. J. B 90, 155 (2017). https://doi.org/10.1140/epjb/e2017-80209-2
Received:
Published:
DOI: https://doi.org/10.1140/epjb/e2017-80209-2