Skip to main content

Constraints and entropy in a model of network evolution

Abstract

Barabási–Albert’s “Scale Free” model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the “Scale Free” model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the “Scale Free” and “constraints” model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.

References

  1. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  2. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, 2001)

  3. Ã. Albert, H. Jeong, Physica A 272, 173 (1999)

    ADS  Article  Google Scholar 

  4. D. Watts, S. Strogatz, Nature 393, 440 (1998)

    ADS  Article  Google Scholar 

  5. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

    ADS  Article  Google Scholar 

  6. G. Bianconi, A.L. Barabási, Phys. Rev. Lett. 86, 5632 (2001)

    ADS  Article  Google Scholar 

  7. P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)

    ADS  Article  Google Scholar 

  8. P. Tee, G. Parisis, I. Wakeman, Towards an approximate graph entropy measure for identifying incidents in network event data, in IEEE/IFIP Network Operations and Management Symposium, NOMS, Istanbul, Turkey (2016), pp. 1049–1054

  9. P. Tee, G. Parisis, I. Wakeman, IEEE Trans. Netw. Serv. Manag. 14, 646 (2017)

    Article  Google Scholar 

  10. M. Faloutsos, P. Faloutsos, C. Faloutsos, in SIGCOMM (1999), pp. 251–262

  11. R. Albert, H. Jeong, A. Barabasi, Nature 406, 378 (2000)

    ADS  Article  Google Scholar 

  12. P.R. Guimarães, M.A.M. De Aguiar, J. Bascompte, P. Jordano, S.F.D. Reis, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 71, 3 (2005)

    Article  Google Scholar 

  13. N. Berger, C. Borgs, J.T. Chayes, A. Saberi, Ann. Probab. 42, 1 (2014)

    MathSciNet  Article  Google Scholar 

  14. B.W. Herr, W. Ke, E. Hardy, K. Borner, Proc. Int. Conf. Inf. Visual. 2007, 465 (2007)

    Google Scholar 

  15. R.M. D’Souza, C. Borgs, J.T. Chayes, N. Berger, R.D. Kleinberg, Proc. Natl. Acad. Sci. USA 104, 6112 (2007)

    ADS  Article  Google Scholar 

  16. G.B.a.L.Barabási, Europhys. Lett. 54, 13 (2000)

    Google Scholar 

  17. P. Moriano, J. Finke, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 1090 (2013)

  18. G. Su, X. Zhang, Y. Zhang, EPL (Europhys. Lett.) 100, 38003 (2012)

    ADS  Article  Google Scholar 

  19. J. Park, M.E.J. Newman, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 70, 1 (2004)

    Google Scholar 

  20. G. Bianconi, C. Rahmede, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 93, 1 (2016)

    Article  Google Scholar 

  21. O.T. Courtney, G. Bianconi, Phys. Rev. E 95, 062301 (2017)

    ADS  Article  Google Scholar 

  22. R. Sharma, R. Bhandari, Commun. Stat.: Theor. Methods 43, 4503 (2014)

    Article  Google Scholar 

  23. A. Clauset, C. Rohilla Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  24. J. Leskovec, A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection (2014), http://snap.stanford.edu/data

  25. M. Cha, H. Haddai, F. Benevenuto, K.P. Gummadi, Int. AAAI Conf. Weblogs Soc. Media, 10–17 (2010)

  26. S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, IEEE J. Select. Areas Commun. 29, 1765 (2011)

    Article  Google Scholar 

  27. J. Leskovec, J. Kleinberg, C. Faloutsos, ACM Trans. Knowl. Discov. Data 1, 1 (2007)

    Article  Google Scholar 

  28. L. Takac, M. Zabovsky, in International Scientific Conference & International Workshop (2012), pp. 1–6

  29. J. Leskovec, J. Mcauley, Adv. Neural Inf. Process. 1–9 (2012)

  30. J. Leskovec, K.J. Lang, A. Dasgupta, M.W. Mahoney, Int. Math. 6, 29 (2011)

    Google Scholar 

  31. J. Patokallio, Open Flights (2016), http://openflights.org/about

  32. E. Schrödinger, Statistical thermodynamics (Courier Corporation, 1989)

  33. J. Körner, Fredman Komlós bounds and information theory (1986)

  34. G. Simonyi, Comb. Optim. 20, 399 (1995)

    MathSciNet  Google Scholar 

  35. F. Passerini, S. Severini, arXiv:0812.2597 (2008), p. 5

  36. G. Bianconi, EPL (Europhys. Lett.) 81, 28005 (2008)

    ADS  Article  Google Scholar 

  37. M. Dehmer, Appl. Math. Comput. 201, 82 (2008)

    MathSciNet  Google Scholar 

  38. M. Dehmer, A. Mowshowitz, Inf. Sci. 181, 57 (2011)

    Article  Google Scholar 

  39. S. Dereich, P. Mörters, Electron. J. Probab. 14, 1222 (2009)

    MathSciNet  Article  Google Scholar 

  40. S. Dereich, P. Mörters, Jahresaber. Dtsch. Math-Ver. 113, 21 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Tee.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tee, P., Wakeman, I., Parisis, G. et al. Constraints and entropy in a model of network evolution. Eur. Phys. J. B 90, 226 (2017). https://doi.org/10.1140/epjb/e2017-80185-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80185-5

Keywords

  • Statistical and Nonlinear Physics