Atomic oxygen adsorption on Pb(1 0 0)

Regular Article

Abstract

We study atomic oxygen adsorption on a Pb(1 0 0) surface using density functional theory. The structures, binding energies, work function, and charge transfer of on-surface and subsurface adsorption are investigated at a range of coverages from 0.06 to 1.00 ML. The energetically favored adsorption site for on-surface adsorption is found to be a distorted hollow site for the whole coverage range studied. The distorted structures are stabilized by mixing of 6s and 6p states of lead mediated by the 2p states of oxygen. For subsurface adsorption, the sub-bridge site is found to be preferred to the sub-hollow site at low coverages, the two being nearly equal in energy at monolayer coverage. At 0.11 ML coverage, diffusion from an on-surface hollow site to a sub-bridge site is found to be barrierless, suggesting facile subsurface oxidation at low coverages. Combined on-surface and subsurface adsorption leads to the formation of a two-layer oxide structure resembling β-PbO.

Keywords

Solid State and Materials 

References

  1. 1.
    L.M. Droessler, H.E. Assender, A.A.R. Watt, Mater. Lett. 71, 51 (2011) CrossRefGoogle Scholar
  2. 2.
    R.W. Joyner, K. Kishi, M.W. Roberts, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 358, 223 (1978) ADSCrossRefGoogle Scholar
  3. 3.
    K. Thürmer, E. Williams, J. Reutt-Robey, Science 297, 2033 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    D. Chadwick, A.B. Christie, J. Chem. Soc. Faraday Trans. II 76, 267 (1980) CrossRefGoogle Scholar
  5. 5.
    S. Evans, J.M. Thomas, J. Chem. Soc. Faraday Trans. II 71, 313 (1975) CrossRefGoogle Scholar
  6. 6.
    R.W. Hewitt, N. Winograd, Surf. Sci. 78, 1 (1978) ADSCrossRefGoogle Scholar
  7. 7.
    N.J. Chou, J.M. Eldridge, R. Hammer, D. Dong, J. Electron. Mater. 2, 115 (1973) ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Eldridge, D.W. Dong, Surf. Sci. 40, 512 (1973) ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Eldridge, D.W. Dong, Surf. Sci. 40, 531 (1973) ADSCrossRefGoogle Scholar
  10. 10.
    B. Sun, P. Zhang, Z. Wang, S. Duan, X.G. Zhao, X. Ma, Q.K. Xue, Phys. Rev. B 78, 035421 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yu, Chin. Phys. B 19, 108201 (2010) CrossRefGoogle Scholar
  12. 12.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  15. 15.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) ADSCrossRefGoogle Scholar
  22. 22.
    P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994) ADSCrossRefGoogle Scholar
  23. 23.
    Z. Hu, Y. Yang, B. Sun, X. Shao, W. Wang, P. Zhang, J. Chem. Phys. 132, 024703 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944) ADSCrossRefGoogle Scholar
  25. 25.
    W.M. Haynes ed., CRC handbook of chemistry and physics (2017), Internet version; accessed on 2017/1/3 Google Scholar
  26. 26.
    Y.T. Huang, R.D. Diehl, A. Pulkkinen, K. Pussi, J. Phys. Condens. Matter 27, 345001 (2015) CrossRefGoogle Scholar
  27. 27.
    R.F. Lin, Y.S. Li, F. Jona, P.M. Marcus, Phys. Rev. B 42, 1150 (1990) ADSCrossRefGoogle Scholar
  28. 28.
    D. Yu, M. Scheffler, Phys. Rev. B 70, 155417 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 21, 084204 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Phys. Rev. B 68, 195408 (2003) ADSCrossRefGoogle Scholar
  31. 31.
    F. Peeters, A.J. Slavin, Surf. Sci. 214, 85 (1989) ADSCrossRefGoogle Scholar
  32. 32.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011) CrossRefGoogle Scholar
  33. 33.
    D.J. Payne, R.G. Egdell, A. Walsh, G.W. Watson, J. Guo, P.A. Glans, T. Learmonth, K.E. Smith, Phys. Rev. Lett. 96, 157403 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    R.C. Keezer, D.L. Bowman, J.H. Becker, J. Appl. Phys. 39, 2062 (1968) ADSCrossRefGoogle Scholar
  35. 35.
    K. Iinuma, T. Seki, M. Wada, Mater. Res. Bull. 2, 527 (1967) CrossRefGoogle Scholar
  36. 36.
    H.J. Terpstra, R.A. de Groot, C. Haas, Phys. Rev. B 52, 11690 (1995) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Engineering Science, Lappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations