Study of diffusion and local structure of sodium-silicate liquid: the molecular dynamic simulation

Regular Article

Abstract

A systematic analysis on sodium-silicate melt with various silica contents was carried out. The simulation revealed two diffusion mechanisms occurred in the melt: the bond-breaking and hopping between sites. The local structure was analyzed through T-simplexes. It was revealed that T-clusters have a non-spherical shape and represent the diffusion channel, in which Na atoms are dominant, but no any O atoms are located. The SiO2-poor melt acquires a long channel. In contrast, the SiO2-rich melt consists of unconnected short channels. The simulation also revealed the immobile and mobile regions which differ in local structure and constituent composition. We propose a new CL-function to characterizing the spatial distribution of different atom component. The spatial distribution of mobile and immobile atoms is found quite different. In particular, the immobile atoms are concentrated in high-density regions possessing very large density of immobile atoms. The spatial distribution of mobile atoms in contrast is more homogeneous.

Keywords

Solid State and Materials 

References

  1. 1.
    S.A. Brawer, W.B. White, J. Chem. Phys. 63, 2421 (1975) ADSCrossRefGoogle Scholar
  2. 2.
    T. Fuss, A. Mogus-Milankovic, C.S. Ray, C.E. Lesher, R. Youngman, D.E. Day, J. Non-Cryst. Solids 352, 4101 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    B.O. Mysen, D. Virgo, F.A. Seifert, Rev. Geophys. 20, 353 (1982) ADSCrossRefGoogle Scholar
  4. 4.
    T. Furukawa, W.B. White, J. Chem. Phys. 95, 776 (1991) ADSCrossRefGoogle Scholar
  5. 5.
    G.N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, S.J. Gurman, Nature 293, 611 (1981) ADSCrossRefGoogle Scholar
  6. 6.
    H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Hoa, K.N. Dalby, Y. Huang, Z. Yan, J. Non-Cryst. Solids 357, 170 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    N.K. Nasikas, T.G. Edwards, S. Sen, G.N. Papatheodorou, J. Phys. Chem. B 116, 2696 (2012) CrossRefGoogle Scholar
  8. 8.
    B.O. Mysen, J.D. Frantz, Eur. J. Miner. 5, 393 (1993) CrossRefGoogle Scholar
  9. 9.
    P.F. McMillan, G.H. Wolf, B.T. Poe, Chem. Geol. 96, 351 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    W.J. Malfait, V.P. Zakaznova, H.W.E. Halter, J. Non-Cryst. Solids 353, 4029 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    P. Zhang, P.J. Grandinetti, Phys. Chem. B 101, 4004 (1997) CrossRefGoogle Scholar
  12. 12.
    L. Cormier, G.J. Cuello, Phys. Rev. B 83, 224204 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wang et al., Nat. Comm. 5, 3241 (2014) Google Scholar
  14. 14.
    A. Suzuki et al., Phys. Chem. Miner. 38, 59 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    S. Mori, E. Ohtani, A. Suzuki, Earth Planet Sci. Lett. 175, 87 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    K. Funakoshi, A. Suzuki, H. Terasaki, J. Phys. Condens. Matter 14, 11343 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    D. Tinker et al., Am. Miner. 89, 1701 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Allwardt et al., Am. Miner. 92, 1093 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    I. Kushiro, J. Geophys. Res. 81, 1955 (1976) Google Scholar
  20. 20.
    C.M. Scarfe, B.O. Mysen, D. Virgo, Carnegie Inst Wash. Yearbook 78, 574 (1979) Google Scholar
  21. 21.
    B.B. Karki, D. Bhattarai, L. Stixrude, Phys. Rev. B 76, 104205 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Baggain, D.B. Ghosh, B.B. Karki, Phys. Chem. Min. 42, 393 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    M. Bauchy, B. Guillot, K. Micoulaut, N. Sator, Chem. Geol. 346, 47 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    E.R. Weeks, J.C. Cracker, A.C. Levitt, A. Schofie, D.A. Weitz, Science 287, 627 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    B.V.R. Tata, P.S. Mohanty, M.C. Valsakumar, Phys. Rev. Lett. 88, 018302 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    A.W.Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    J.C. Mauro, K.D. Vargheese, A. Tandia, J. Chem. Phys. 132, 194501 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    J. Meyer, W. Horbach, F. Kob, H. Kargl Schober, Phys. Rev. Lett. 9, 027801 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R. Ho, J.Non-Cryst. Solids 409, 139 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    O.N. Koroleva, V.N. Anfilogov, A. Shatskiy, K.D. Litasov, J. Non-Cryst. Solids 375, 62 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    J. Horbach, W. Kob, K. Binder, Chem. Geol. 174, 87 (2001) ADSCrossRefGoogle Scholar
  33. 33.
    F. Noritake, K. Kawamura, T. Yoshino, E. Takahashi, J. Non-Cryst. Solids 358, 3109 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    F. Noritake, K. Kawamura, J. Non-Cryst. Solids 447, 141 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    H. Jabraoui, E.M. Achhal, A. Hasnaoui, J.L. Garden, Y. Vaills, S. Ouaskit, J. Non-Cryst. Solids 448, 16 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    P. Jund, W. Kob, R. Jullien, Phys. Rev. B 64, 134303 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    E. Sunyer, P. Jund, R. Jullien, Phys. Rev. B 65, 214203 (2002) ADSCrossRefGoogle Scholar
  38. 38.
    H. Lammert, M. Kunow, A. Heuer, Phys. Rev. Lett. 90, 215901 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    J. Habasaki, Y. Hiwatari, Phys. Rev. B 69, 144207 (2004) ADSCrossRefGoogle Scholar
  40. 40.
    J. Habasaki, I. Okada, Y. Hiwatari, J. Non-Cryst. Solids 208, 181 (1996) ADSCrossRefGoogle Scholar
  41. 41.
    P.K. Hung, F. Noritake, N.V. Yen, L.T. San, J. Non-Cryst. Solids 452, 14 (2016) ADSCrossRefGoogle Scholar
  42. 42.
    H. Sakuma, K. Kawamura, Geochim. Cosmochim. Acta 73, 4100 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Simulation in Materials Science Research Group, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Electrical and Electronics Engineering, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Graduate Faculty of Interdisciplinary Research, University of YamanashiYamanashi CityJapan
  4. 4.Computational Astrophysics Laboratory, RIKENSaitama CityJapan
  5. 5.Department of Computational PhysicsHanoi University of Science and TechnologyHanoi CityVietnam

Personalised recommendations