Ab initio study of new sp3 silicon and germanium allotropes predicted from the zeolite topologies

  • Vladimir A. Saleev
  • Alexandra V. Shipilova
  • Davide M. Proserpio
  • Giuseppe Fadda
Regular Article
  • 26 Downloads

Abstract

We study the structural, elastic, vibrational, electronic, and optical properties of six new silicon and germanium allotropes using ab initio quantum mechanical methods. These allotropes have been found first for carbon by using topological methods on a large sample of zeolites; this is extended here to Si and Ge, given their chemical similarity with C and their importance for the semiconductor industry and for photovoltaics. Some Si allotropes show excellent absorbance of solar light, making them an interesting alternatives to amorphous Si, whereas an allotrope of Ge has a very small band gap, in agreement with the metallic nature of amorphous Ge.

Keywords

Solid State and Materials 

Supplementary material

10051_2017_2267_MOESM1_ESM.pdf (799 kb)
Ab initio study of new sp3 silicon and germanium allotropes predicted from the zeolite topologies

References

  1. 1.
    I.A. Baburin, D.M. Proserpio, V.A. Saleev, A. Shipilova, Phys. Chem. Chem. Phys. 17, 1332 (2015)CrossRefGoogle Scholar
  2. 2.
    A.R. Oganov, C.W. Glass, J. Chem. Phys. 124, 244704 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A.R. Oganov, Modern Methods of Crystal Structure Prediction (Wiley-VCH, Berlin, 2011)Google Scholar
  4. 4.
    V.A. Blatov, D.M. Proserpio, in Modern Methods of Crystal Structure Prediction, edited by A.R. Oganov (Wiley-VCH, Berlin, 2011), pp. 1–28Google Scholar
  5. 5.
    V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Cryst. Growth Des. 14, 3576 (2014)CrossRefGoogle Scholar
  6. 6.
    M.W. Deem, R. Pophale, P.A. Cheeseman, D.J. Earl, J. Phys. Chem. 113, 21353 (2009)Google Scholar
  7. 7.
    M.M.J. Treacy, K.H. Randall, S. Rao, J.A. Perry, D.J. Chadi, Z. Kristallogr. 212, 768 (1997)Google Scholar
  8. 8.
    P. Bhubaneswari, S. Iniyan, R. Goic, Renew. Sustain. Energy Rev. 15, 1625 (2011)CrossRefGoogle Scholar
  9. 9.
    L. El Chaar, L.A. Lamont, N. El Zein, Renew. Sustain. Energy Rev. 15, 2165 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Zwijnenburg, K. Jelfs, S. Bromley, Phys. Chem. Chem. Phys. 12, 8505 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Selli, I. Baburin, R. Martanak, S. Leoni, Sci. Rep. 3, 1466 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Haberl, T. Strobel, J. Bradby, Appl. Phys. Rev. 3, 040808 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Fan et al., Appl. Phys. Rev. 118, 185704 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Q. Fan, J. Li, X. Peng, L. Meng, C. Tang, J. Zhong, Phys. Chem. Chem. Phys. 18, 9682 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Mujica, C.J. Pickard, R. Needs, Phys. Rev. B 91, 214104 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S. Botti, J.A. Flores-Livas, M. Amsler, S. Goedecker, M.A.L. Marques, Phys. Rev. B 86, 121204 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D.Y. Kim, S. Stefanoski, O.O. Kurakevych, T.A. Strobel, Nat. Mater. 14, 169 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    C. Raffy, J. Furthmüller, F. Bechstedt, Phys. Rev. B 66, 075201 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    B. Wen, J. Zhao, M.J. Bucknum, P. Yao, T. Li, Diam. Relat. Mater. 17, 356 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    R. Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio, Angew. Chem. Int. Ed. 55, 10962 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Dovesi et al., Int. J. Quantum Chem. 114, 1287 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Dovesi et al., CRYSTAL14 User’s Manual (Univ. of Torino, Torino, Italy, 2014)Google Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    M.F. Peitinger, D.V. Oliveira, T. Bredow, J. Comput. Chem. 34, 451 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, J. Chem. Phys. 123, 174101 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    J. Heyd, G. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    F. Birch, Phys. Rev. 71, 809 (1947)ADSCrossRefGoogle Scholar
  31. 31.
    F. Pascale, C. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem. 25, 888 (2004)CrossRefGoogle Scholar
  32. 32.
    W.M. Haynes, CRC Handbook of Chemistry and Physics 2015–2016, 96th edn. (CRC Press/Taylor & Francis, Boca Raton, FL, USA, 2015)Google Scholar
  33. 33.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)Google Scholar
  34. 34.
    F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    J.J. Gilman, Electronic Basis of the Strength of Materials (Cambridge University Press, Cambridge, 2003)Google Scholar
  36. 36.
    S. Pugh, Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  37. 37.
    Q. Long, X. Nie, S.L. Shang, J. Wang, Y. Du, Z. Jin, Z.K. Liu, Comput. Mater. Sci. 121, 167 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Voigt, Lehrburch der Kristallphysik (Teubner, Leipzig, 1928)Google Scholar
  39. 39.
    A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    A. Javin, O. Jepsen, J. Flad et al., Angew. Chem. Int. Ed. 31, 187 (1992)CrossRefGoogle Scholar
  41. 41.
    L. Kleinman, Phys. Rev. 128, 2614 (1962)ADSCrossRefGoogle Scholar
  42. 42.
    J. Baima, A. Zelferino, P. Olivero, A. Erba, R. Dovesi, Phys. Chem. Chem. Phys. (2016)Google Scholar
  43. 43.
    A. De, C.E. Pryor, J. Phys. Condens. Matter 26, 045801 (2014)CrossRefGoogle Scholar
  44. 44.
    J. Hafner, M. Tegze, W. Jank, J. Less Common Met. 145, 531 (1988)CrossRefGoogle Scholar
  45. 45.
    O. Shimomura, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, J. Fukushima, H. Endo, Philos. Mag. 29, 547 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    K. Hummer, J. Harl, G. Kresse, Phys. Rev. B 80, 115205 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    A. Sadao, in Optical Constants of Crystalline and Amorphous Semiconductors, 714th edn. (Springer, USA, 1999)Google Scholar
  48. 48.
    A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R. Collins, X. Deng, G. Ganguly, J. Appl. Phys. 92, 2424 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vladimir A. Saleev
    • 1
  • Alexandra V. Shipilova
    • 1
  • Davide M. Proserpio
    • 2
    • 3
  • Giuseppe Fadda
    • 4
  1. 1.Department of PhysicsSamara National Research University – 34SamaraRussia
  2. 2.Samara Center for Theoretical Materials Science (SCTMS), Samara National Research University – 34SamaraRussia
  3. 3.Università degli Studi di Milano, Dipartimento di Chimica – via Golgi, 19MilanoItaly
  4. 4.Research and Education Center for Physics of Open Nonequilibrium Systems, Samara National Research University – 34SamaraRussia

Personalised recommendations