Skip to main content
Log in

Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by “bridges” (with probability p bridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by “necks” which occur with probability p neck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of p bridge and p neck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Handbook of Heterogeneous Catalysis, 2nd edn. (Wiley-VCH, Weinheim, 2008)

  2. F. Schüth, K.S.W. Sing, J. Weitkamp, Handbook of Porous Solids (Wiley-VCH, 2002)

  3. P.W. Barone, S. Baik, D.A. Heller, M.S. Strano, Nat. Mater. 4, 86 (2005)

    Article  ADS  Google Scholar 

  4. J. Kim, W.A. Li, Y. Choi, S.A. Lewin, C.S. Verbeke, G. Dranoff, D.J. Mooney, Nat. Biotechnol. 33, 64 (2015)

    Article  Google Scholar 

  5. D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12, 3602 (2012)

    Article  ADS  Google Scholar 

  6. O.K. Farha, A.O. Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Nat. Chem. 2, 944 (2010)

    Article  Google Scholar 

  7. L. Canham, Handbook of Porous Silicon (Springer International Publishing, 2014)

  8. D. Kovalev, M. Fujii, Adv. Mater. 17, 2531 (2005)

    Article  Google Scholar 

  9. K.P. Tamarov, L.A. Osminkina, S.V. Zinovyev, K.A. Maximova, J.V. Kargina, M.B. Gongalsky, Y. Ryabchikov, A. Al-Kattan, A.P. Sviridov, M. Sentis et al., Sci. Rep. 4, 7034 (2014)

    Article  Google Scholar 

  10. C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Nature 445, 749 (2007)

    Article  ADS  Google Scholar 

  11. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, D.S. Wiersma, Nat. Photon. 1, 172 (2007)

    Article  ADS  Google Scholar 

  12. P. Kumar, T. Hofmann, K. Knorr, P. Huber, P. Scheib, P. Lemmens, J. Appl. Phys. 103, 024303 (2008)

    Article  ADS  Google Scholar 

  13. R. Valiullin, A. Khokhlov, Phys. Rev. E 73, 051605 (2006)

    Article  ADS  Google Scholar 

  14. H. Jobic, D.N. Theodorou, Microporous Mesoporous Mater. 102, 21 (2007)

    Article  Google Scholar 

  15. M. Appel, G. Fleischer, J. Kärger, F. Fujara, S. Siegel, Europhys. Lett. 34, 483 (1996)

    Article  ADS  Google Scholar 

  16. R. Valiullin, Diffusion NMR of Confined Systems: Fluid Transport in Porous Solids and Heterogeneous Materials (The Royal Society of Chemistry, Cambridge, UK, 2017)

  17. D. Kondrashova, A. Lauerer, D. Mehlhorn, H. Jobic, A. Feldhoff, M. Thommes, D. Chakraborty, C. Gommes, J. Zecevic, P. de Jongh et al., Sci. Rep. 7, 40207 (2017)

    Article  ADS  Google Scholar 

  18. S. Naumov, A. Khokhlov, R. Valiullin, J. Kärger, P.A. Monson, Phys. Rev. E 78, 060601 (2008)

    Article  ADS  Google Scholar 

  19. S. Fritzsche, J. Kärger, Europhys. Lett. 63, 465 (2003)

    Article  ADS  Google Scholar 

  20. K. Binder, Rep. Prog. Phys. 60, 487 (1997)

    Article  ADS  Google Scholar 

  21. D. Schneider, D. Mehlhorn, P. Zeigermann, J. Kärger, R. Valiullin, Chem. Soc. Rev. 45, 3439 (2016)

    Article  Google Scholar 

  22. A. Bunde, S. Havlin, Fractals and Disordered Systems, 2nd edn. (Springer-Verlag, Berlin, Heidelberg, New York, 1996)

  23. D. ben Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

  24. Z. Sadjadi, H. Rieger, Phys. Rev. Lett. 110, 144502 (2013)

    Article  ADS  Google Scholar 

  25. R.L. Fleischer, P.B. Price, E.M. Symes, Science 143, 249 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustem Valiullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashova, D., Valiullin, R., Kärger, J. et al. Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory. Eur. Phys. J. B 90, 136 (2017). https://doi.org/10.1140/epjb/e2017-80145-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80145-1

Keywords

Navigation